87 research outputs found

    Safety, Humoral and Cell Mediated Immune Responses to Two Formulations of an Inactivated, Split-Virion Influenza A/H5N1 Vaccine in Children

    Get PDF
    BACKGROUND:Highly pathogenic influenza A/H5N1 has caused outbreaks in wild birds and poultry in Asia, Africa and Europe. It has also infected people, especially children, causing severe illness and death. Although the virus shows limited ability to transmit between humans, A/H5N1 represents a potential source of the next influenza pandemic. This study assesses the safety and immunogenicity of aluminium hydroxide adjuvanted (Al) and non adjuvanted influenza A/Vietnam/1194/2004 NIBRG-14 (H5N1) vaccine in children. METHODS AND FINDINGS:In a Phase II, open, randomised, multicentre trial 180 children aged 6 months to 17 years received two injections, 21 days apart, of vaccine containing either: 30 microg haemagglutinin (HA) with adjuvant (30 microg+Al) or 7.5 microg HA without adjuvant. An additional 60 children aged 6-35 months received two "half dose" injections (ie 15 microg+Al or 3.8 microg). Safety was followed for 21 days after vaccination. Antibody responses were assessed 21 days after each injection and cellular immune responses were explored. Vaccination appeared well tolerated in all age groups. The 30 microg+Al formulation was more immunogenic than 7.5 microg in all age groups: in these two groups 79% and 46% had haemagglutinination inhibition antibody titres > or =32 (1/dil). Among 6-35 month-olds, the full doses were more immunogenic than their half dose equivalents. Vaccination induced a predominantly Th2 response against H5 HA. CONCLUSIONS:This influenza A(H5N1) vaccine was well tolerated and immunogenic in children and infants, with Al adjuvant providing a clear immunogenic advantage. These results demonstrate that an H5N1 Al-adjuvanted vaccine, previously shown to be immunogenic and safe in adults, can also be used in children, the group most at risk for pandemic influenza

    Mosquito larvicidal activities of Solanum villosum berry extract against the dengue vector Stegomyia aegypti

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. Although several plants have been reported for mosquitocidal activity, only a few botanicals have moved from the laboratory to field use, because they are poorly characterized, in most cases active principals are not determined and most of the works are restricted to preliminary screening. <it>Solanum villosum </it>is a common weed distributed in many parts of India with medicinal properties, but the larvicidal activity of this plant has not been reported so far.</p> <p>Methods</p> <p>Aqueous and polar/non-polar solvent extract of fresh, mature, green berries of <it>S. villosum </it>was tested against <it>Stegomyia aegypti</it>, a common vector of dengue fever. A phytochemical analysis of chloroform:methanol extract was performed to search for the active toxic ingredient. The lethal concentration was determined (log probit analysis) and compared with Malathion. The chemical nature of the active substance was also evaluated following ultraviolet-visual (UV-Vis) and infrared (IR) analysis.</p> <p>Results</p> <p>In a 72 hour bioassay experiment with the aqueous extract, the highest mortality was recorded in 0.5% extract. When the mortality of different solvent extracts was compared, the maximum (<it>p </it>< 0.05) mortality was recorded at a concentration of 50 ppm of chloroform:methanol extract (1:1, v/v). The larvicidal activity was lower when compared with the chemical insecticide, Malathion (<it>p </it>< 0.05). Results of regression analysis revealed that the mortality rate (<it>Y</it>) was positively correlated with the period of exposure (<it>X</it>) and the log probit analysis (95% confidence level) recorded lowest value (5.97 ppm) at 72 hours of exposure. Phytochemical analysis of the chlororm:methanol extract reported the presence of many bioactive phytochemicals. Two toxic compounds were detected having <it>R</it><sub>f </sub>= 0.82 (70% and 73.33% mortality in 24 and 48 hours, respectively) and <it>R</it><sub>f </sub>= 0.95 (40% and 50% mortality in 24 and 48 hours, respectively). IR analysis provided preliminary information about the steroidal nature of the active ingredient.</p> <p>Conclusion</p> <p><it>S. villosum </it>offers promise as potential bio control agent against <it>S. aegypti </it>particularly in its markedly larvicidal effect. The extract or isolated bioactive phytochemical could be used in stagnant water bodies for the control of mosquitoes acting as vector for many communicable diseases.</p

    A Randomized Placebo-Controlled Phase Ia Malaria Vaccine Trial of Two Virosome-Formulated Synthetic Peptides in Healthy Adult Volunteers

    Get PDF
    BACKGROUND AND OBJECTIVES: Influenza virosomes represent an innovative human-compatible antigen delivery system that has already proven its suitability for subunit vaccine design. The aim of the study was to proof the concept that virosomes can also be used to elicit high titers of antibodies against synthetic peptides. The specific objective was to demonstrate the safety and immunogenicity of two virosome-formulated P. falciparum protein derived synthetic peptide antigens given in two different doses alone or in combination. METHODOLOGY/PRINCIPAL FINDINGS: The design was a single blind, randomized, placebo controlled, dose-escalating study involving 46 healthy Caucasian volunteers aged 18-45 years. Five groups of 8 subjects received virosomal formulations containing 10 microg or 50 microg of AMA 49-CPE, an apical membrane antigen-1 (AMA-1) derived synthetic phospatidylethanolamine (PE)-peptide conjugate or 10 ug or 50 ug of UK39, a circumsporozoite protein (CSP) derived synthetic PE-peptide conjugate or 50 ug of both antigens each. A control group of 6 subjects received unmodified virosomes. Virosomal formulations of the antigens (designated PEV301 and PEV302 for the AMA-1 and the CSP virosomal vaccine, respectively) or unmodified virosomes were injected i. m. on days 0, 60 and 180. In terms of safety, no serious or severe adverse events (AEs) related to the vaccine were observed. 11/46 study participants reported 16 vaccine related local AEs. Of these 16 events, all being pain, 4 occurred after the 1(st), 7 after the 2(nd) and 5 after the 3(rd) vaccination. 6 systemic AEs probably related to the study vaccine were reported after the 1(st) injection, 10 after the 2(nd) and 6 after the 3(rd). Generally, no difference in the distribution of the systemic AEs between either the doses applied (10 respectively 50 microg) or the synthetic antigen vaccines (PEV301 and PEV302) used for immunization was found. In terms of immunogenicity, both PEV301 and PEV302 elicited already after two injections a synthetic peptide-specific antibody response in all volunteers immunized with the appropriate dose. In the case of PEV301 the 50 microg antigen dose was associated with a higher mean antibody titer and seroconversion rate than the 10 microg dose. In contrast, for PEV302 mean titer and seroconversion rate were higher with the lower dose. Combined delivery of PEV301 and PEV302 did not interfere with the development of an antibody response to either of the two antigens. No relevant antibody responses against the two malaria antigens were observed in the control group receiving unmodified virosomes. CONCLUSIONS: The present study demonstrates that three immunizations with the virosomal malaria vaccine components PEV301 or/and PEV302 (containing 10 microg or 50 microg of antigen) are safe and well tolerated. At appropriate antigen doses seroconversion rates of 100% were achieved. Two injections may be sufficient for eliciting an appropriate immune response, at least in individuals with pre-existing anti-malarial immunity. These results justify further development of a final multi-stage virosomal vaccine formulation incorporating additional malaria antigens. TRIAL REGISTRATION: ClinicalTrials.gov NCT00400101

    Dog Bites in Humans and Estimating Human Rabies Mortality in Rabies Endemic Areas of Bhutan

    Get PDF
    Dog bites in humans are a public health problem worldwide. We conducted a hospital based questionnaire survey and described the incidence and risk factors for human dog bites in Bhutan. We also estimated the human death rate attributable to rabies in two rabies endemic areas of south Bhutan. Our study shows that dog bites incidents in humans are common in the survey areas. There were significant gender and age differences in bite incidents; males and the children are affected the most. The majority of the victims were bitten by stray dogs, increasing the risk of rabies infection if not treated in time. Our decision tree model predicted 2.23 (95% CI: 1.20–3.59) human deaths from rabies/year, equivalent to an annual incidence of 4.67 (95% CI: 2.53–7.53) deaths/100,000 in the two rabies endemic areas of south Bhutan. In the absence of post exposure prophylaxis, the model predicted 19.24 (95% CI: 13.69–25.14) deaths/year in these two areas. The public should be encouraged to visit hospitals for post exposure prophylaxis following dog bite injury in south Bhutan

    Virosome-Formulated Plasmodium falciparum AMA-1 & CSP Derived Peptides as Malaria Vaccine: Randomized Phase 1b Trial in Semi-Immune Adults & Children

    Get PDF
    BACKGROUND\ud \ud This trial was conducted to evaluate the safety and immunogenicity of two virosome formulated malaria peptidomimetics derived from Plasmodium falciparum AMA-1 and CSP in malaria semi-immune adults and children.\ud \ud METHODS\ud \ud The design was a prospective randomized, double-blind, controlled, age-deescalating study with two immunizations. 10 adults and 40 children (aged 5-9 years) living in a malaria endemic area were immunized with PEV3B or virosomal influenza vaccine Inflexal®V on day 0 and 90.\ud \ud RESULTS\ud \ud No serious or severe adverse events (AEs) related to the vaccines were observed. The only local solicited AE reported was pain at injection site, which affected more children in the Inflexal®V group compared to the PEV3B group (p = 0.014). In the PEV3B group, IgG ELISA endpoint titers specific for the AMA-1 and CSP peptide antigens were significantly higher for most time points compared to the Inflexal®V control group. Across all time points after first immunization the average ratio of endpoint titers to baseline values in PEV3B subjects ranged from 4 to 15 in adults and from 4 to 66 in children. As an exploratory outcome, we found that the incidence rate of clinical malaria episodes in children vaccinees was half the rate of the control children between study days 30 and 365 (0.0035 episodes per day at risk for PEV3B vs. 0.0069 for Inflexal®V; RR  = 0.50 [95%-CI: 0.29-0.88], p = 0.02).\ud \ud CONCLUSION\ud \ud These findings provide a strong basis for the further development of multivalent virosomal malaria peptide vaccines.\ud \ud TRIAL REGISTRATION\ud \ud ClinicalTrials.gov NCT00513669

    A hematopoietic contribution to microhemorrhage formation during antiviral CD8 T cell-initiated blood-brain barrier disruption

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extent to which susceptibility to brain hemorrhage is derived from blood-derived factors or stromal tissue remains largely unknown. We have developed an inducible model of CD8 T cell-initiated blood-brain barrier (BBB) disruption using a variation of the Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis. This peptide-induced fatal syndrome (PIFS) model results in severe central nervous system (CNS) vascular permeability and death in the C57BL/6 mouse strain, but not in the 129 SvIm mouse strain, despite the two strains' having indistinguishable CD8 T-cell responses. Therefore, we hypothesize that hematopoietic factors contribute to susceptibility to brain hemorrhage, CNS vascular permeability and death following induction of PIFS.</p> <p>Methods</p> <p>PIFS was induced by intravenous injection of VP2<sub>121-130 </sub>peptide at 7 days post-TMEV infection. We then investigated brain inflammation, astrocyte activation, vascular permeability, functional deficit and microhemorrhage formation using T2*-weighted magnetic resonance imaging (MRI) in C57BL/6 and 129 SvIm mice. To investigate the contribution of hematopoietic cells in this model, hemorrhage-resistant 129 SvIm mice were reconstituted with C57BL/6 or autologous 129 SvIm bone marrow. Gadolinium-enhanced, T1-weighted MRI was used to visualize the extent of CNS vascular permeability after bone marrow transfer.</p> <p>Results</p> <p>C57BL/6 and 129 SvIm mice had similar inflammation in the CNS during acute infection. After administration of VP2<sub>121-130 </sub>peptide, however, C57BL/6 mice had increased astrocyte activation, CNS vascular permeability, microhemorrhage formation and functional deficits compared to 129 SvIm mice. The 129 SvIm mice reconstituted with C57BL/6 but not autologous bone marrow had increased microhemorrhage formation as measured by T2*-weighted MRI, exhibited a profound increase in CNS vascular permeability as measured by three-dimensional volumetric analysis of gadolinium-enhanced, T1-weighted MRI, and became moribund in this model system.</p> <p>Conclusion</p> <p>C57BL/6 mice are highly susceptible to microhemorrhage formation, severe CNS vascular permeability and morbidity compared to the 129 SvIm mouse. This susceptibility is transferable with the bone marrow compartment, demonstrating that hematopoietic factors are responsible for the onset of brain microhemorrhage and vascular permeability in immune-mediated fatal BBB disruption.</p

    Neurocognition and quality of life after reinitiating antiretroviral therapy in children randomized to planned treatment interruption

    Get PDF
    Objective: Understanding the effects of antiretroviral treatment (ART) interruption on neurocognition and quality of life (QoL) are important for managing unplanned interruptions and planned interruptions in HIV cure research. Design: Children previously randomized to continuous (continuous ART, n=41) vs. planned treatment interruption (PTI, n=47) in the Pediatric European Network for Treatment of AIDS (PENTA) 11 study were enrolled. At study end, PTI children resumed ART. At 1 and 2 years following study end, children were assessed by the coding, symbol search and digit span subtests of Wechsler Intelligence Scale for Children (6-16 years old) or Wechsler Adult Intelligence Scale ( 6517 years old) and by Pediatrics QoL questionnaires for physical and psychological QoL. Transformed scaled scores for neurocognition and mean standardized scores for QoL were compared between arms by t-test and Mann-Whitney U test, respectively. Scores indicating clinical concern were compared (&lt;7 for neurocognition and &lt;70 for QoL tests). Results: Characteristics were similar between arms with a median age of 12.6 years, CD4 + of 830 cells/\u3bcl and HIV RNA of 1.7 log 10 copies/ml. The median cumulative ART exposure was 9.6 in continuous ART vs. 7.7 years in PTI (P=0.02). PTI children had a median of 12 months off ART and had resumed ART for 25.2 months at time of first assessment. Neurocognitive scores were similar between arms for all tests. Physical and psychological QoL scores were no different. About 40% had low neurocognitive and QoL scores indicating clinical concern. Conclusion: No differences in information processing speed, sustained attention, short-term memory and QoL functioning were observed between children previously randomized to continuous ART vs. PTI in the PENTA 11 trial
    corecore