4,734 research outputs found

    Low Dirac Eigenmodes and the Topological and Chiral Structure of the QCD Vacuum

    Get PDF
    Several lattice calculations which probe the chiral and topological structure of QCD are discussed. The results focus attention on the low-lying eigenmodes of the Dirac operator in typical gauge field configurations.Comment: Talk presented at the DPF2000 Conferenc

    An N-body/SPH Study of Isolated Galaxy Mass Density Profiles

    Full text link
    We investigate the evolution of mass density profiles in secular disk galaxy models, paying special attention to the development of a two-component profile from a single initial exponential disk free of cosmological evolution (i.e., no accretion or interactions). As the source of density profile variations, we examine the parameter space of the spin parameter, halo concentration, virial mass, disk mass and bulge mass, for a total of 162 simulations in the context of a plausible model of star formation and feedback (GADGET-2). The evolution of the galaxy mass density profile, including the development of a two-component profile with an inner and outer segment, is controlled by the ratio of the disk mass fraction, mdm_{d}, to the halo spin parameter, λ\lambda. The location of the break between the two components and speed at which it develops is directly proportional to md/λm_{d}/\lambda; the amplitude of the transition between the inner and outer regions is however controlled by the ratio of halo concentration to virial velocity. The location of the divide between the inner and outer profile does not change with time. (Abridged)Comment: 27 pages, 31 figures. Accepted for publication at MNRAS. A high-resolution version of the paper with figures can be found here http://www.mpia-hd.mpg.de/~foyle/papers/MN-07-1491-MJ.R1.pd

    Lattice Heavy Quark Effective Theory and the Isgur-Wise function

    Get PDF
    We compute the Isgur-Wise function using heavy quark effective theory formulated on the lattice. The non-relativistic kinetic energy term of the heavy quark is included to the action as well as terms remaining in the infinite quark mass limit. The classical velocity of the heavy quark is renormalized on the lattice and we determine the renormalized velocity non-perturbatively using the energy-momentum dispersion relation. The slope parameter of the Isgur-Wise function at zero recoil is obtained at β=6.0\beta=6.0 on a 243×4824^3\times 48 lattice for three values of mQm_{Q}.Comment: 14 pages of A4 format and 8 figures in one uuencoded postscript fil

    Quarkonium spin structure in lattice NRQCD

    Get PDF
    Numerical simulations of the quarkonium spin splittings are done in the framework of lattice nonrelativistic quantum chromodynamics (NRQCD). At leading order in the velocity expansion the spin splittings are of O(MQv4)O(M_Q v^4), where MQM_Q is the renormalized quark mass and v2v^2 is the mean squared quark velocity. A systematic analysis is done of all next-to-leading order corrections. This includes the addition of O(MQv6)O(M_Q v^6) relativistic interactions, and the removal of O(a2MQv4)O(a^2 M_Q v^4) discretization errors in the leading-order interactions. Simulations are done for both S- and P-wave mesons, with a variety of heavy quark actions and over a wide range of lattice spacings. Two prescriptions for the tadpole improvement of the action are also studied in detail: one using the measured value of the average plaquette, the other using the mean link measured in Landau gauge. Next-to-leading order interactions result in a very large reduction in the charmonium splittings, down by about 60% from their values at leading order. There are further indications that the velocity expansion may be poorly convergent for charmonium. Prelimary results show a small correction to the hyperfine splitting in the Upsilon system.Comment: 16 pages, REVTEX v3.1, 5 postscript figures include

    Study of Charmonia near the deconfining transition on an anisotropic lattice with O(a) improved quark action

    Get PDF
    We study hadron properties near the deconfining transition in the quenched lattice QCD simulation. This paper focuses on the heavy quarkonium states, such as J/ψJ/\psi meson. In order to treat heavy quarks at T>0T>0, we adopt the O(a)O(a) improved Wilson action on anisotropic lattice. We discuss ccˉc\bar{c} bound state observing the wave function and compare the meson correlators at above and below TcT_c. Although we find a large change of correlator near the TcT_c, the strong spatial correlation which is almost the same as confinement phase survives even T1.5TcT\sim 1.5T_c.Comment: 19 pages, 10 figure

    Precision Upsilon Spectroscopy from Nonrelativistic Lattice QCD

    Full text link
    The spectrum of the Upsilon system is investigated using the Nonrelativistic Lattice QCD approach to heavy quarks and ignoring light quark vacuum polarization. We find good agreement with experiment for the Upsilon(1S), Upsilon(2S), Upsilon(3S) and for the center of mass and fine structure of the chi_b states. The lattice calculations predict b-bbar D-states with center of mass at (10.20 +/- 0.07 +/- 0.03)GeV. Fitting procedures aimed at extracting both ground and excited state energies are developed. We calculate a nonperturbative dispersion mass for the Upsilon(1S) and compare with tadpole-improved lattice perturbation theory.Comment: 8 pages, latex, SCRI-94-57, OHSTPY-HEP-T-94-00

    Managed moves: schools collaborating for collective gain

    Get PDF
    Government guidance in the United Kingdom encourages groups of schools to take collective responsibility for supporting and making provision for excluded pupils and those at risk of exclusion. Managed-moves are one way that some schools and authorities are enacting such guidance. This paper presents the results of an evaluation of one such scheme. The scheme, involving seven neighbouring secondary schools, was nearing its first year of completion. The paper draws primarily on interview data with pupils, parents and school staff to describe a number of positive outcomes associated with the scheme and to explore how these were achieved. We found that while some of these could be attributed directly to the managed-move, others arose from the more inclusive ethos and practices of particular schools. The concepts of tailored support, care and commitment emerged as strong themes that underpinned the various practical ways in which some schools in the cluster were able to re-engage 'at-risk' pupils. As managed moves become more widely practiced it will be important to remember that it is how the move proceeds and develops rather than the move itself that will ultimately make the difference for troubled and troublesome pupils

    Tadpole renormalization and relativistic corrections in lattice NRQCD

    Get PDF
    We make a comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and NRQCD actions are analyzed using the mean-link u0,Lu_{0,L} in Landau gauge, and using the fourth root of the average plaquette u0,Pu_{0,P}. Simulations are done for ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b systems. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at lattice spacings in the range of about 0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole renormalization using u0,Lu_{0,L}. This includes much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,Lu_{0,L} is used. We also find that relativistic corrections to the spin splittings are smaller when u0,Lu_{0,L} is used, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units. Simulations with u0,Lu_{0,L} also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,Lu_{0,L} is used, compared to when u0,Pu_{0,P} is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and references

    Fluctuation Pressure of a Stack of Membranes

    Full text link
    We calculate the universal pressure constants of a stack of N membranes between walls by strong-coupling theory. The results are in very good agreement with values from Monte-Carlo simulations.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/31

    Precision Charmonium Spectroscopy From Lattice QCD

    Get PDF
    We present results for Charmonium spectroscopy using Non-Relativistic QCD (NRQCD). For the NRQCD action the leading order spin-dependent and next to leading order spin-independent interactions have been included with tadpole-improved coefficients. We use multi-exponential fits to multiple correlation functions to extract ground and excited SS states. Splittings between the lowest SS, PP and DD states are given and we have accurate values for the SS state hyperfine splitting and the χc\chi_c fine structure. Agreement with experiment is good - the remaining systematic errors are discussed.Comment: 23 pages uuencoded latex file. Contains figures in late
    corecore