779 research outputs found

    Float-polishing process and analysis of float-polished quartz

    Get PDF
    A fluid-mechanical model is developed for the float-polishing process. In this model laminar flow between the sample and the lap results in pressure gradients at the grooves that support the sample on a fluid layer. The laminar fluid motion also produces supersmooth, damage-free surfaces. Quartz substrates for applications in high-stress environments were float polished, and their surfaces were analyzed by optical scatterometry, photoacoustic spectroscopy, and atomic force microscopy. The removal of 100 µm of material by a lapping-polishing process, with final float polishing, left low levels of subsurface damage, with a surface roughness of approximately 0.2-nm rms

    Lonely adatoms in space

    Full text link
    There is a close relation between the problems of second layer nucleation in epitaxial crystal growth and chemical surface reactions, such as hydrogen recombination, on interstellar dust grains. In both cases standard rate equation analysis has been found to fail because the process takes place in a confined geometry. Using scaling arguments developed in the context of second layer nucleation, I present a simple derivation of the hydrogen recombination rate for small and large grains. I clarify the reasons for the failure of rate equations for small grains, and point out a logarithmic correction to the reaction rate when the reaction is limited by the desorption of hydrogen atoms (the second order reaction regime)

    Delayed Decision-making in Real-time Beatbox Percussion Classification

    Get PDF
    This is an electronic version of an article published in Journal of New Music Research, 39(3), 203-213, 2010. doi:10.1080/09298215.2010.512979. Journal of New Music Research is available online at: www.tandfonline.com/openurl?genre=article&issn=1744-5027&volume=39&issue=3&spage=20

    Energy balance and diurnal variation in methane production as affected by feeding frequency in Jersey cows in late lactation

    Get PDF
    Methane (CH4) production of ruminants typically increases with increased dry matter intake (DMI). However, few studies have observed the effects of feeding multiple times a day and its effects on diurnal variation in CH4 production and energy balance in late-lactation dairy cattle. A study using headbox-style indirect calorimetry and 12 multiparous (225 ± 16.2 d in milk; mean ± SD) lactating Jersey cows was conducted to determine the effects of feeding twice daily on diurnal variation in CH4 production and total energy balance. A crossover design with 14-d periods (10 d of adaption and 4 d of collection) was used to compare 2 treatments. Treatments consisted of either once a day feeding (1×; 100% of feed given at 1000 h) or twice a day feeding (2×; 50% of feed given at 1000 h and the final 50% at 2000 h) with a common diet fed in both treatments. Dry matter intake was not different between treatments, with a mean of 16.9 ± 0.88 kg/d. Once a day feeding tended to have greater milk yield compared with twice a day feeding (21.2 vs. 20.4 ± 1.59 kg/d, respectively). Milk fat and milk protein percentage were not different, with means of 6.18 ± 0.20% and 3.98 ± 0.08%, respectively. Total CH4 production did not differ between treatments, with a mean of 402.1 ± 20.8 L/d. Similarly, CH4 per unit of milk yield and DMI was not different between treatments, with means of 20.5 ± 1.81 and 23.8 ± 1.21 L/kg, respectively. Feeding frequency did not affect diurnal variation of hourly CH4 production, with a mean of 17.1 ± 0.74 L/h. A trend was observed for a treatment × hour interaction. Methane production per hour increased after the second feeding for cattle fed twice versus once daily. Gross energy, digestible energy, metabolizable energy, and balance (milk plus tissue) per kilogram of DMI did not differ by feeding frequency, with means of 4.41 ± 0.01, 3.05 ± 0.03, 2.63 ± 0.03, and 1.32 ± 0.08 Mcal/ kg of DM, respectively. Metabolizable energy for maintenance was 146 kcal/kg of metabolic body weight, with an efficiency of converting metabolizable energy to net energy balance (milk plus tissue) of 76%. Nitrogen balance did not differ among treatments, with a mean balance of 17.3 ± 13.0 g/d. Therefore, total CH4 production and energy maintenance were not affected by feeding frequency. However, CH4 was variable throughout the day, and caution should be exercised when collecting CH4 samples at a limited number of time points because this may under- or overestimate total production

    Reducing methane production with corn oil and calcium sulfate: Responses on whole-animal energy and nitrogen balance in dairy cattle

    Get PDF
    The addition of fat and calcium sulfate to diets fed to ruminants has resulted in a reduction in methane production, but the effects on energy balance have not been studied. A study using indirect calorimetry and 16 multiparous (8 Holstein and 8 Jersey; 78 ± 15 d in milk; mean ± standard deviation) lactating dairy cows was conducted to determine how mitigating methane production by adding corn oil or calcium sulfate to diets containing reduced-fat distillers grains affects energy and nitrogen balance. A replicated 4 × 4 Latin square design with 35-d periods (28 d of adaption and 4 d of collections) was used to compare 4 different dietary treatments. Treatments were composed of a control (CON) diet, which did not contain reduced-fat distillers grain and solubles (DDGS), and treatment diets containing 20% (dry matter basis) DDGS (DG), 20% DDGS with 1.38% (dry matter basis) added corn oil (CO), and 20% DDGS with 0.93% (dry matter basis) added calcium sulfate (CaS). Compared with CON, dry matter intake was not affected by treatment, averaging 29.6 ± 0.67 kg/d. Milk production was increased for diets containing DDGS compared with CON (26.3 vs. 27.8 ± 0.47 kg/d for CON vs. DDGS, respectively), likely supported by increased energy intake. Compared with CON, energy-corrected milk was greater in DG and CO (30.1 vs. 31.4, 31.7, and 31.0 ± 0.67 kg/d for CON, DG, CO, and CaS, respectively). Compared with CON, the addition of calcium sulfate and corn oil to diets containing DDGS reduced methane production per kg of dry matter intake (22.3, 19.9, and 19.6 ± 0.75 L/kg per d for CON, CO, and CaS, respectively). Similarly, methane production per kilogram of energy-corrected milk was reduced with the addition of calcium sulfate and corn oil to diets containing DDGS (14.2, 12.5, and 12.4 ± 0.50 L/kg per d for CON, CO, and CaS, respectively). Compared with CON and CaS, the intake of digestible energy was greater for DG and CO treatments (57.7, 62.1, 62.0, and 59.0 ± 1.38 Mcal/d for CON, DG, CO, and CaS, respectively). Intake of metabolizable energy was greater in all treatments containing DDGS compared with CON (50.5 vs. 54.0 ± 1.08 Mcal/d for CON vs. DDGS, respectively). Net balance (milk plus tissue energy) per unit of dry matter was greater in CO (containing DDGS and oil) than CON (1.55 vs. 1.35 ± 0.06 Mcal/kg for CO vs. CON, respectively). Tissue energy was greater in DG and CO compared with CON (6.08, 7.04, and 3.16 ± 0.99 Mcal/d for DG, CO, and CON, respectively. Results of this study suggest that the addition of oil and calcium sulfate to diets containing DDGS may be a viable option to reduce methane production and in the case of oil also improve net energy balance in lactating dairy cows

    Energy balance and diurnal variation in methane production as affected by feeding frequency in Jersey cows in late lactation

    Get PDF
    Methane (CH4) production of ruminants typically increases with increased dry matter intake (DMI). However, few studies have observed the effects of feeding multiple times a day and its effects on diurnal variation in CH4 production and energy balance in late-lactation dairy cattle. A study using headbox-style indirect calorimetry and 12 multiparous (225 ± 16.2 d in milk; mean ± SD) lactating Jersey cows was conducted to determine the effects of feeding twice daily on diurnal variation in CH4 production and total energy balance. A crossover design with 14-d periods (10 d of adaption and 4 d of collection) was used to compare 2 treatments. Treatments consisted of either once a day feeding (1×; 100% of feed given at 1000 h) or twice a day feeding (2×; 50% of feed given at 1000 h and the final 50% at 2000 h) with a common diet fed in both treatments. Dry matter intake was not different between treatments, with a mean of 16.9 ± 0.88 kg/d. Once a day feeding tended to have greater milk yield compared with twice a day feeding (21.2 vs. 20.4 ± 1.59 kg/d, respectively). Milk fat and milk protein percentage were not different, with means of 6.18 ± 0.20% and 3.98 ± 0.08%, respectively. Total CH4 production did not differ between treatments, with a mean of 402.1 ± 20.8 L/d. Similarly, CH4 per unit of milk yield and DMI was not different between treatments, with means of 20.5 ± 1.81 and 23.8 ± 1.21 L/kg, respectively. Feeding frequency did not affect diurnal variation of hourly CH4 production, with a mean of 17.1 ± 0.74 L/h. A trend was observed for a treatment × hour interaction. Methane production per hour increased after the second feeding for cattle fed twice versus once daily. Gross energy, digestible energy, metabolizable energy, and balance (milk plus tissue) per kilogram of DMI did not differ by feeding frequency, with means of 4.41 ± 0.01, 3.05 ± 0.03, 2.63 ± 0.03, and 1.32 ± 0.08 Mcal/ kg of DM, respectively. Metabolizable energy for maintenance was 146 kcal/kg of metabolic body weight, with an efficiency of converting metabolizable energy to net energy balance (milk plus tissue) of 76%. Nitrogen balance did not differ among treatments, with a mean balance of 17.3 ± 13.0 g/d. Therefore, total CH4 production and energy maintenance were not affected by feeding frequency. However, CH4 was variable throughout the day, and caution should be exercised when collecting CH4 samples at a limited number of time points because this may under- or overestimate total production

    The effect of monomer evaporation on a simple model of submonolayer growth

    Full text link
    We present a model for thin film growth by particle deposition that takes into account the possible evaporation of the particles deposited on the surface. Our model focuses on the formation of two-dimensional structures. We find that the presence of evaporation can dramatically affect the growth kinetics of the film, and can give rise to regimes characterized by different ``growth'' exponents and island size distributions. Our results are obtained by extensive computer simulations as well as through a simple scaling approach and the analysis of rate equations describing the system. We carefully discuss the relationship of our model with previous studies by Venables and Stoyanov of the same physical situation, and we show that our analysis is more general.Comment: 41 pages including figures, Revtex, to be published in Physical Review
    • …
    corecore