926 research outputs found

    Local ecosystem feedbacks and critical transitions in the climate

    Get PDF
    Global and regional climate models, such as those used in IPCC assessments, are the best tools available for climate predictions. Such models typically account for large-scale land-atmosphere feedbacks. However, these models omit local vegetationenvironment 5 feedbacks that are crucial for critical transitions in ecosystems. Here, we reveal the hypothesis that, if the balance of feedbacks is positive at all scales, local vegetation-environment feedbacks may trigger a cascade of amplifying effects, propagating from local to large scale, possibly leading to critical transitions in the largescale climate. We call for linking local ecosystem feedbacks with large-scale land10 atmosphere feedbacks in global and regional climate models in order to yield climate predictions that we are more confident about

    The Clumping Transition in Niche Competition: a Robust Critical Phenomenon

    Full text link
    We show analytically and numerically that the appearance of lumps and gaps in the distribution of n competing species along a niche axis is a robust phenomenon whenever the finiteness of the niche space is taken into account. In this case depending if the niche width of the species σ\sigma is above or below a threshold σc\sigma_c, which for large n coincides with 2/n, there are two different regimes. For σ>sigmac\sigma > sigma_c the lumpy pattern emerges directly from the dominant eigenvector of the competition matrix because its corresponding eigenvalue becomes negative. For σ</sigmac\sigma </- sigma_c the lumpy pattern disappears. Furthermore, this clumping transition exhibits critical slowing down as σ\sigma is approached from above. We also find that the number of lumps of species vs. σ\sigma displays a stair-step structure. The positions of these steps are distributed according to a power-law. It is thus straightforward to predict the number of groups that can be packed along a niche axis and it coincides with field measurements for a wide range of the model parameters.Comment: 16 pages, 7 figures; http://iopscience.iop.org/1742-5468/2010/05/P0500

    Determination of the Hurst Exponent by Use of Wavelet Transforms

    Full text link
    We propose a new method for (global) Hurst exponent determination based on wavelets. Using this method, we analyze synthetic data with predefined Hurst exponents, fracture surfaces and data from economy. The results are compared with those obtained from Fourier spectral analysis. When many samples are available, the wavelet and Fourier methods are comparable in accuracy. However, when one or only a few samples are available, the wavelet method outperforms the Fourier method by a large margin.Comment: 10 pages RevTeX, 13 Postscript figures. Some additional material compared to previous versio

    Inhibition of Bruton's TK regulates macrophage NF-kappa B and NLRP3 inflammasome activation in metabolic inflammation

    Get PDF
    Background and Purpose: There are no medications currently available to treat metabolic inflammation. Bruton's tyrosine kinase (BTK) is highly expressed in monocytes and macrophages and regulates NF-\u3baB and NLRP3 inflammasome activity; both propagate metabolic inflammation in diet-induced obesity. Experimental Approach: Using an in vivo model of chronic inflammation, high-fat diet (HFD) feeding, in male C57BL/6J mice and in vitro assays in primary murine and human macrophages, we investigated if ibrutinib, an FDA approved BTK inhibitor, may represent a novel anti-inflammatory medication to treat metabolic inflammation. Key Results: HFD-feeding was associated with increased BTK expression and activation, which was significantly correlated with monocyte/macrophage accumulation in the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice inhibited the activation of BTK and reduced monocyte/macrophage recruitment to the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice decreased the activation of NF-\u3baB and the NLRP3 inflammasome. As a result, ibrutinib treated mice fed HFD had improved glycaemic control through restored signalling by the IRS-1/Akt/GSK-3\u3b2 pathway, protecting mice against the development of hepatosteatosis and proteinuria. We show that BTK regulates NF-\u3baB and the NLRP3 inflammasome specifically in primary murine and human macrophages, the in vivo cellular target of ibrutinib. Conclusion and Implications: We provide \u201cproof of concept\u201d evidence that BTK is a novel therapeutic target for the treatment of diet-induced metabolic inflammation and ibrutinib may be a candidate for drug repurposing as an anti-inflammatory agent for the treatment of metabolic inflammation in T2D and microvascular disease

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    The impact of loco-regional recurrences on metastatic progression in early-stage breast cancer: a multistate model

    Get PDF
    To study whether the effects of prognostic factors associated with the occurrence of distant metastases (DM) at primary diagnosis change after the incidence of loco-regional recurrences (LRR) among women treated for invasive stage I or II breast cancer. The study population consisted of 3,601 women, enrolled in EORTC trials 10801, 10854, or 10902 treated for early-stage breast cancer. Data were analysed in a multivariate, multistate model by using multivariate Cox regression models, including a state-dependent covariate. The presence of a LRR in itself is a significant prognostic risk factor (HR: 3.64; 95%-CI: 2.02-6.5) for the occurrence of DM. Main prognostic risk factors for a DM are young age at diagnosis (</=40: HR: 1.79; 95%-CI: 1.28-2.51), larger tumour size (HR: 1.58; 95%-CI: 1.35-1.84) and node positivity (HR: 2.00; 95%-CI: 1.74-2.30). Adjuvant chemotherapy is protective for a DM (HR: 0.66; 95%-CI: 0.55-0.80). After the occurrence of a LRR the latter protective effect has disappeared (P = 0.009). The presence of LRR in itself is a significant risk factor for DM. For patients who are at risk of developing LRR, effective local control should be the main target of therapy

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
    corecore