9,276 research outputs found

    Millimeter Wave Localization: Slow Light and Enhanced Absorption

    Full text link
    We exploit millimeter wave technology to measure the reflection and transmission response of random dielectric media. Our samples are easily constructed from random stacks of identical, sub-wavelength quartz and Teflon wafers. The measurement allows us to observe the characteristic transmission resonances associated with localization. We show that these resonances give rise to enhanced attenuation even though the attenuation of homogeneous quartz and Teflon is quite low. We provide experimental evidence of disorder-induced slow light and superluminal group velocities, which, in contrast to photonic crystals, are not associated with any periodicity in the system. Furthermore, we observe localization even though the sample is only about four times the localization length, interpreting our data in terms of an effective cavity model. An algorithm for the retrieval of the internal parameters of random samples (localization length and average absorption rate) from the external measurements of the reflection and transmission coefficients is presented and applied to a particular random sample. The retrieved value of the absorption is in agreement with the directly measured value within the accuracy of the experiment.Comment: revised and expande

    Hydrogen atom in phase space. The Kirkwood-Rihaczek representation

    Get PDF
    We present a phase-space representation of the hydrogen atom using the Kirkwood-Rikaczek distribution function. This distribution allows us to obtain analytical results, which is quite unique because an exact analytical form of the Wigner functions corresponding to the atom states is not known. We show how the Kirkwood-Rihaczek distribution reflects properties of the hydrogen atom wave functions in position and momentum representations.Comment: 5 pages (and 5 figures

    Differential gaze behavior towards sexually preferred and non-preferred human figures

    Get PDF
    The gaze pattern associated with image exploration is a sensitive index of our attention, motivation and preference. To examine whether an individual’s gaze behavior can reflect his/her sexual interest, we compared gaze patterns of young heterosexual men and women (M = 19.94 years, SD = 1.05) while viewing photos of plain-clothed male and female figures aged from birth to sixty years old. Our analysis revealed a clear gender difference in viewing sexually preferred figure images. Men displayed a distinctive gaze pattern only when viewing twenty-year-old female images, with more fixations and longer viewing time dedicated to the upper body and waist-hip region. Women also directed more attention at the upper body on female images in comparison to male images, but this difference was not age-specific. Analysis of local image salience revealed that observers’ eye-scanning strategies could not be accounted for by low-level processes, such as analyzing local image contrast and structure, but were associated with attractiveness judgments. The results suggest that the difference in cognitive processing of sexually preferred and non-preferred figures can be manifested in gaze patterns associated with figure viewing. Thus, eye-tracking holds promise as a potential sensitive measure for sexual preference, particularly in men

    Inclusive 2H(3He,t) reaction at 2 GeV

    Full text link
    The inclusive 2H(3He,t) reaction has been studied at 2 GeV for energy transfers up to 500 MeV and scattering angles from 0.25 up to 4 degrees. Data are well reproduced by a model based on a coupled-channel approach for describing the NN and N Delta systems. The effect of final state interaction is important in the low energy part of the spectra. In the delta region, the cross-section is very sensitive to the effects of Delta-N interaction and Delta N - NN process. The latter has also a large influence well below the pion threshold. The calculation underestimates the experimental cross-section between the quasi-elastic and the delta peaks; this is possibly due to projectile excitation or purely mesonic exchange currents.Comment: 9 pages, 9 figures, accepted for publication in EPJ

    Exactly solvable charged dilaton gravity theories in two dimensions

    Get PDF
    We find exactly solvable dilaton gravity theories containing a U(1) gauge field in two dimensional space-time. The classical general solutions for the gravity sector (the metric plus the dilaton field) of the theories coupled to a massless complex scalar field are obtained in terms of the stress-energy tensor and the U(1) current of the scalar field. We discuss issues that arise when we attempt to use these models for the study of the gravitational back-reaction.Comment: The introductory part is changed. a version to appear in Class. Quant. Grav. 6 pages, RevTe

    Formal Analysis of V2X Revocation Protocols

    Get PDF
    Research on vehicular networking (V2X) security has produced a range of security mechanisms and protocols tailored for this domain, addressing both security and privacy. Typically, the security analysis of these proposals has largely been informal. However, formal analysis can be used to expose flaws and ultimately provide a higher level of assurance in the protocols. This paper focusses on the formal analysis of a particular element of security mechanisms for V2X found in many proposals: the revocation of malicious or misbehaving vehicles from the V2X system by invalidating their credentials. This revocation needs to be performed in an unlinkable way for vehicle privacy even in the context of vehicles regularly changing their pseudonyms. The REWIRE scheme by Forster et al. and its subschemes BASIC and RTOKEN aim to solve this challenge by means of cryptographic solutions and trusted hardware. Formal analysis using the TAMARIN prover identifies two flaws with some of the functional correctness and authentication properties in these schemes. We then propose Obscure Token (OTOKEN), an extension of REWIRE to enable revocation in a privacy preserving manner. Our approach addresses the functional and authentication properties by introducing an additional key-pair, which offers a stronger and verifiable guarantee of successful revocation of vehicles without resolving the long-term identity. Moreover OTOKEN is the first V2X revocation protocol to be co-designed with a formal model.Comment: 16 pages, 4 figure

    Mapping the Wigner distribution function of the Morse oscillator into a semi-classical distribution function

    Full text link
    The mapping of the Wigner distribution function (WDF) for a given bound-state onto a semiclassical distribution function (SDF) satisfying the Liouville equation introduced previously by us is applied to the ground state of the Morse oscillator. Here we give results showing that the SDF gets closer to the corresponding WDF as the number of levels of the Morse oscillator increases. We find that for a Morse oscillator with one level only, the agreement between the WDF and the mapped SDF is very poor but for a Morse oscillator of ten levels it becomes satisfactory.Comment: Revtex, 27 pages including 13 eps figure

    A comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials

    Get PDF
    BACKGROUND DATA: Cervical arthroplasty offers theoretical advantages over traditional spinal fusion, including elimination of adjacent segment disease and elimination of the risk of pseudoarthrosis formation. Initial studies of cervical arthroplasty have shown promising results, however, the ideal design characteristics for disc replacement constructs have not been determined. The current study seeks to quantify the differences in the shock absorption characteristics of three commonly used materials in cervical disc arthroplasty. METHODS: Three different nucleus materials, polyurethane (PU), polyethylene (PE) and a titanium-alloy (Ti) were tested in a humidity- and temperature-controlled chamber. Ten of each nucleus type underwent three separate mechanical testing protocols to measure 1) dynamic stiffness, 2) quasi-static stiffness, 3) energy absorption, and 4) energy dissipation. The results were compared using analysis of variance. RESULTS: PU had the lowest mean dynamic stiffness (435 ± 13 N/mm, P < .0001) and highest energy absorption (19.4 ± 0.1 N/mm, P < .0001) of all three nucleus materials tested. PU was found to have significantly higher energy dissipation (viscous damping ratio 0.017 ± 0,001, P < .0001) than the PE or TI nuclei. PU had the lowest quasi-static stiffness (598 ± 23 N/mm, P < .0001) of the nucleus materials tested. A biphasic response curve was observed for all of the PU nuclei tests. CONCLUSIONS: Polyurethane absorbs and dissipates more energy and is less stiff than either polyethylene or titanium. LEVEL OF EVIDENCE: Basic Science/Biomechanical Study. CLINICAL RELEVANCE: This study characterizes important differences in biomechanical properties of materials that are currently being used for different cervical disc prostheses

    Cluster Analysis of Thermal Icequakes Using the Seismometer to Investigate Ice and Ocean Structure (SIIOS): Implications for Ocean World Seismology

    Get PDF
    Ocean Worlds are of high interest to the planetary community due to the potential habitability of their subsurface oceans. Over the next few decades several missions will be sent to ocean worlds including the Europa Clipper, Dragonfly, and possibly a Europa lander. The Dragonfly and Europa lander missions will carry seismic payloads tasked with detecting and locating seismic sources. The Seismometer to Investigate Ice and Ocean Structure (SIIOS) is a NASA PSTAR funded project that investigates ocean world seismology using terrestrial analogs. The goals of the SIIOS experiment include quantitatively comparing flight-candidate seismometers to traditional instruments, comparing single-station approaches to a small-aperture array, and characterizing the local seismic environment of our field sites. Here we present an analysis of detected local events at our field sites at Gulkana Glacier in Alaska and in Northwest Greenland approximately 80 km North of Qaanaaq, Greenland. Both field sites passively recorded data for about two weeks. We deployed our experiment on Gulkana Glacier in September 2017 and in Greenland in June 2018. At Gulkana there was a nearby USGS weather station which recorded wind data. Temperature data was collected using the MERRA satellite. In Greenland we deployed our own weather station to collect temperature and wind data. Gulkana represents a noisier and more active environment. Temperatures fluctuated around 0C, allowing for surface runoff to occur during the day. The glacier had several moulins, and during deployment we heard several rockfalls from nearby mountains. In addition to the local environment, Gulkana is located close to an active plate boundary (relative to Greenland). This meant that there were more regional events recorded over two weeks, than in Greenland. Greenlands local environment was also quieter, and less active. Temperatures remained below freezing. The Greenland ice was much thicker than Gulkana (~850 m versus ~100 m) and our stations were above a subglacial lake. Both conditions can reduce event detections from basal motion. Lastly, we encased our Greenland array in an aluminum vault and buried it beneath the surface unlike our array in Gulkana where the instruments were at the surface and covered with plastic bins. The vault further insulated the array from thermal and atmospheric events
    • …
    corecore