5 research outputs found

    Setting the Phosphorus Boundaries for Greek Natural Shallow and Deep Lakes for Water Framework Directive Compliance

    Get PDF
    Kagalou I, C. Ntislidou, D. Latinopoulos, D. Kemitzoglou, V. Tsiaoussi, and DC Bobori. 2021. Setting the Phosphorus Boundaries for Greek Natural Shallow and Deep Lakes for Water Framework Directive Compliance. Water 13(5):739. https://doi.org/10.3390/w13050739Eutrophication caused by nutrient enrichment is a predominant stressor leading to lake degradation and, thus, the set-up of boundaries that support good ecological status, the Water Framework Directive’s main target, is a necessity. Greece is one of the Member States that have recorded delays in complying with the coherent management goals of European legislation. A wide range of different statistical approaches has been proposed in the Best Practice Guide for determining appropriate nutrient thresholds. To determine the nutrient thresholds supporting the good status of natural Greek lakes, the phytoplankton dataset gathered from the national monitoring programme (2015–2020) was used for shallow and deep natural lakes. The regression analyses were sufficient and robust in order to derive total phosphorus thresholds that ranged from 20 to 41 μg/L in shallow and 15–32 μg/L in deep natural lake types. Nutrient boundaries that encompass the stressors these lakes are subject to, are essential in proper lake management design

    Rediscovery of the endemic gastropod Dianella schlickumi (Gastropoda, Hydrobiidae) and its discrimination from Dianella thiesseana: environmental correlates and implications for their conservation

    No full text
    The aquatic snail genus Dianella (Gastropoda: Hydrobiidae) has only two representatives in Greece: Dianella schlickumi Schütt, 1962 and Dianella thiesseana (Kobelt, 1878). D. schlickumi, a narrow endemic species to Lake Amvrakia (in Aitoloakarnania, western-central Greece), is considered as Critically Endangered (Possibly Extinct, sensu IUCN 2017). Our study confirmed its presence in Lake Amvrakia, where it had not been detected for more than 30 years. We document the unknown anatomical characters based on the D. schlickumi specimens. Moreover, the presence of D. thiesseana in the nearby lakes Trichonis and Lysimachia was also confirmed, while morphometric analyses enabled the discrimination between the two species. Redundancy Analysis revealed conductivity, dissolved oxygen and pH as the main environmental variables related to the above species’ distribution, shaping their community structure. Both Dianella species require urgent conservation measures to be enforced, due to their habitat degradation from human activities, which are limiting and fragmenting their range. For that purpose, effective management plans have to be elaborated and implemented at the mentioned lakes, focusing on the reduction of human pressures and on the improvement of their habitats. Copyright Chrysoula Ntislidou et al
    corecore