838 research outputs found

    Early Enrichment of the Intergalactic Medium and its Feedback on Galaxy Formation

    Get PDF
    Supernova-driven outflows from early galaxies may have had a large impact on the kinetic and chemical structure of the intergalactic medium (IGM). We use three-dimensional Monte Carlo cosmological realizations of a simple linear peaks model to track the time evolution of such metal-enriched outflows and their feedback on galaxy formation. We find that at most 30% of the IGM by volume is enriched to values above 10^-3 solar in models that only include objects that cool by atomic transitions. The majority of enrichment occurs relatively early (5 < z < 12) and resulting in a mass-averaged cosmological metallicity between 10^-3 and 10^-1.5 solar. The inclusion of Population III objects that cool through H2 line emission has only a minor impact on these results: increasing the mean metallicity and filling factor by at most a factor of 1.4, and moving the dawn of the enrichment epoch to a redshift of approximately 14 at the earliest. Thus enrichment by outflowing galaxies is likely to have been incomplete and inhomogeneous, biased to the areas near the starbursting galaxies themselves. Models with a 10% star formation efficiency can satisfactorily reproduce the nearly constant (2 < z < 5, Z approximately 3.5 x 10^-4 solar) metallicity of the low column density Ly-alpha forest derived by Songaila (2001), an effect of the decreasing efficiency of metal loss from larger galaxies. Finally, we show that IGM enrichment is intimately tied to the ram-pressure stripping of baryons from neighboring perturbations. This results in the suppression of at least 20% of the dwarf galaxies in the mass range 10^8.5 to 10^9.5 solar, in all models with filling factors greater than 2%, and an overall suppression of approximately 50% of dwarf galaxies in the most observationally-favored model.Comment: 8 pages, 5 figures, accepted to Ap

    The Anisotropy in the Cosmic Microwave Background At Degree Angular Scales

    Full text link
    We detect anisotropy in the cosmic microwave background (CMB) at degree angular scales and confirm a previous detection reported by Wollack et al. (1993). The root-mean-squared amplitude of the fluctuations is 447+13μ44^{+13}_{-7} \muK. This may be expressed as the square root of the angular power spectrum in a band of multipoles between leff=6922+29l_{eff}=69^{+29}_{-22}. We find δTl=l(2l+1)/4π=427+12μ\delta T_l = \sqrt{l(2l+1)/4\pi} = 42^{+12}_{-7} \muK. The measured spectral index of the fluctuations is consistent with zero, the value expected for the CMB. The spectral index corresponding to Galactic free-free emission, the most likely foreground contaminant, is rejected at approximately 3σ3\sigma. The analysis is based on three independent data sets. The first, taken in 1993, spans the 26 - 36 GHz frequency range with three frequency bands; the second was taken with the same radiometer as the first but during an independent observing campaign in 1994; and the third, also take in 1994, spans the 36-46 GHz range in three bands. For each telescope position and radiometer channel, the drifts in the instrument offset are 4 μ\le 4~\muK/day over a period of one month. The dependence of the inferred anisotropy on the calibration and data editing is addressed.Comment: 16 pages, 2 figures. Saskatoon 1993/1994 combined analysi

    Mapping the CMB I: the first flight of the QMAP experiment

    Full text link
    We report on the first flight of the balloon-borne QMAP experiment. The experiment is designed to make a map of the cosmic microwave background anisotropy on angular scales from 0.7 to several degrees. Using the map we determine the angular power spectrum of the anisotropy in multipole bands from l~40 to l~140. The results are consistent with the Saskatoon (SK) measurements. The frequency spectral index (measured at low l) is consistent with that of CMB and inconsistent with either Galactic synchrotron or free-free emission. The instrument, measurement, analysis of the angular power spectrum, and possible systematic errors are discussed.Comment: 4 pages, with 5 figures included. Submitted to ApJL. Window functions and color figures are available at http://pupgg.princeton.edu/~cmb/welcome.htm

    Model Independent Primordial Power Spectrum from Maxima, Boomerang, and DASI Data

    Full text link
    A model-independent determination of the primordial power spectrum of matter density fluctuations could uniquely probe physics of the very early universe, and provide powerful constraints on inflationary models. We parametrize the primordial power spectrum As2(k)A_s^2(k) as an arbitrary function, and deduce its binned amplitude from the cosmic microwave background radiation anisotropy (CMB) measurements of Maxima, Boomerang, and DASI. We find that for a flat universe with As2(k)=1A_s^2(k)=1 (scale-invariant) for scales k<0.001k<0.001 h/Mpc, the primordial power spectrum is marginally consistent with a scale-invariant Harrison-Zeldovich spectrum. However, we deduce a rise in power compared to a scale-invariant power spectrum for 0.001 h/{Mpc} \la k \la 0.01 h/{Mpc}. Our results are consistent with large-scale structure data, and seem to suggest that the current observational data allow for the possibility of unusual physics in the very early universe.Comment: substantially revised and final version, accepted by Ap

    Modified Chaplygin Gas and Constraints on its B parameter from CDM and UDME Cosmological models

    Full text link
    We study Modified Chaplygin Gas (MCG) as a candidate for dark energy and predict the values of parameters of the gas for a physically viable cosmological model. The equation of state of MCG (p=BρAραp=B \rho - \frac {A}{\rho^\alpha} ) involves three parameters: BB, AA and α\alpha. The permitted values of these parameters are determined with the help of dimensionless age parameter (HotoH_{o}t_{o}) and H(z)zH(z)-z Data. Specifically we study the allowed ranges of values of B parameter in terms of α\alpha and AsA_{s} (AsA_{s} is defined in terms of the constants in the theory). We explore the constraints of the parameters in Cold Dark Matter(CDM) model and UDME(Unified Dark Matter Energy) model respectively.Comment: 5 pages, 10 fig

    Instrumental and Analytic Methods for Bolometric Polarimetry

    Get PDF
    We discuss instrumental and analytic methods that have been developed for the first generation of bolometric cosmic microwave background (CMB) polarimeters. The design, characterization, and analysis of data obtained using Polarization Sensitive Bolometers (PSBs) are described in detail. This is followed by a brief study of the effect of various polarization modulation techniques on the recovery of sky polarization from scanning polarimeter data. Having been successfully implemented on the sub-orbital Boomerang experiment, PSBs are currently operational in two terrestrial CMB polarization experiments (QUaD and the Robinson Telescope). We investigate two approaches to the analysis of data from these experiments, using realistic simulations of time ordered data to illustrate the impact of instrumental effects on the fidelity of the recovered polarization signal. We find that the analysis of difference time streams takes full advantage of the high degree of common mode rejection afforded by the PSB design. In addition to the observational efforts currently underway, this discussion is directly applicable to the PSBs that constitute the polarized capability of the Planck HFI instrument.Comment: 23 pages, 11 figures. for submission to A&

    Galactic microwave emission at degree angular scales

    Get PDF
    We cross-correlate the Saskatoon Ka and Q-Band Cosmic Microwave Background (CMB) data with different maps to quantify possible foreground contamination. We detect a marginal correlation (2 sigma) with the Diffuse Infrared Background Experiment (DIRBE) 240, 140 and 100 microm maps, but we find no significant correlation with point sources, with the Haslam 408 MHz map or with the Reich and Reich 1420 MHz map. The rms amplitude of the component correlated with DIRBE is about 20% of the CMB signal. Interpreting this component as free-free emission, this normalization agrees with that of Kogut et al. (1996a; 1996b) and supports the hypothesis that the spatial correlation between dust and warm ionized gas observed on large angular scales persists to smaller angular scales. Subtracting this contribution from the CMB data reduces the normalization of the Saskatoon power spectrum by only a few percent.Comment: Minor revisions to match published version. 14 pages, with 2 figures included. Color figure and links at http://www.sns.ias.edu/~angelica/foreground.htm
    corecore