7 research outputs found

    Uniaxial Magnetization Performance of Textured Fe Nanowire Arrays Electrodeposited by a Pulsed Potential Deposition Technique

    Get PDF
    Textured ferromagnetic Fe nanowire arrays were electrodeposited using a rectangular-pulsed potential deposition technique into anodized aluminum oxide nanochannels. During the electrodeposition of Fe nanowire arrays at a cathodic potential of ??1.2 V, the growth rate of the nanowires was ca. 200 nm s?1. The aspect ratio of Fe nanowires with a diameter of 30?±?5 nm reached ca. 2000. The long axis of Fe nanowires corresponded with the direction when a large overpotential during the on-time pulse was applied, whereas it orientated to the direction under the potentiostatic condition with a small overpotential. By shifting the on-time cathode potential up to ??1.8 V, the texture coefficient for the (200) plane, TC200, reached up to 1.94. Perpendicular magnetization performance was observed in Fe nanowire arrays. With increasing TC200, the squareness of Fe nanowire arrays increased up to 0.95 with the coercivity maintained at 1.4 kOe at room temperature. This research result has opened a novel possibility of Fe nanowire arrays that can be applied for a new permanent magnetic material without rare-earth metals

    Facile wet-chemical synthesis of differently shaped cuprous oxide particles and a thin film: Effect of catalyst morphology on the glucose sensing performance

    Get PDF
    Abstract In this work, different facile synthesis routes were developed to create cuprite-based catalyst systems for the amperometric detection of glucose, allowing us to evaluate the impact of important electrode fabrication parameters on the glucose sensing performance. Using homogenous precipitation routes based on a redox system, two differently shaped cuprite particles - skeletons and polyhedrons - could be obtained. Furthermore, a novel electroless deposition technique was introduced that does not require sensitization and activation pretreatments, allowing for the direct modification of the glassy carbon. This technique produced electrodes with dense thin film consisting of merged, octahedral cuprite crystals. Afterward, these materials were tested as potential catalysts for the electrochemical detection of glucose. While the catalyst powders obtained by precipitation required NafionR to be attached to the electrode, the thin film synthesized using electroless plating could be realized with and without additive. Summarizing the results, it was found that NafionR was not required to achieve glucose selectivities typically observed for cuprite catalysts. Also, the type of catalyst application (direct plating vs. ink drop coating) and the particle shape had a pronounced effect on the sensing performance. Compared to the thin film, the powder-type materials showed significantly increased electrochemical responses. The best overall performance was achieved with the polyhedral cuprite particles, resulting in a high sensitivity of 301 μA mmol-1 cm-2, a linear range up to 298 μmol L-1 and a limit of detection of 0.144 μmol L-1

    Electroless synthesis of lepidocrocite (γ-FeOOH) nanotubes in ion track etched polycarbonate templates

    No full text
    In this study, we describe the electroless synthesis of lepidocrocite (gamma-FeOOH) nanotubes produced in ion track etched polycarbonate foils. The foils act as templates after they had been irradiated with heavy ions to produce latent tracks that were etched with a desired diameter. Templates are used to fabricate shape formed 1D nanostructures in general. The synthesis of lepidocrocite nanotubes was carried out in a simple two-step method: firstly, particles were formed by precipitation in aqueous solution; secondly, nanotubes were produced by the deposition of the particles inside the nanochannels of the polycarbonate template. Solvent effects were considered to achieve homogeneous growth resulting in well-defined nanotubes of constant wall thickness along the tube axis. Lepidocrocite nanotubes were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Raman, and Mossbauer spectroscopy. (C) 2011 Elsevier B.V. All rights reserved

    Uniaxial magnetization performance of Co-Al2O3 nano-composite films electrochemically synthesized from acidic aqueous solution

    No full text
    In this study, Co-Al2O3 nano-composite films containing parallel-oriented cobalt nano-cylinders with length-to-diameter aspect ratios of ca. 4000 are synthesized to acquire a uniaxial magnetization property. The Co nano-cylinders were electrodeposited into anodized aluminum oxide films with numerous nano-channels under a low over-potential of less than 0.1 V using an acidic aqueous solution containing CoCl2 at 75 °C. The long axis of Co nano-cylinders, which are electrodeposited at cathode potential of −0.58 V vs. Ag/AgCl, coincides with the c axis of hexagonal close packed (hcp)-Co. The Co-Al2O3 nano-composite films show a uniaxial magnetization behavior due to the large shape anisotropy of Co nano-cylinders and the large magneto-crystalline anisotropy of the hcp-Co crystal structure. We achieved coercivity and squareness values of up to 2.4 and 1.0 kOe, respectively. This study shows an effective way to produce nano-composite films of altered coercivities

    Long-range superconducting proximity effect in polycrystalline Co nanowires

    No full text
    We report experimental evidence of a long-range superconducting proximity effect in polycrystalline Co nanowires in contact with a superconducting W-based floating electrode (inducer). For electrical resistance measurements, voltage leads were connected to the Co nanowire on both sides of the superconducting inducer at a distance of 7.2 µm. We observed a 28% reduction of the nanowire resistance when sweeping the temperature below the inducer's transition temperature Tc = 5.2 K. Our analysis of the resistance data shows that the superconducting proximity length in polycrystalline Co is as large as 1 µm at 2.4 K, attesting to a long-range proximity effect. Moreover, this long-range proximity effect is insusceptible to magnetic fields up to 11 T, which is indicative of spin-triplet pairing. Our results provide evidence that magnetic inhomogeneity of the ferromagnet enlarges the spatial extend of the spin-triplet superconducting proximity effect
    corecore