47,971 research outputs found

    Localization of Two-Dimensional Quantum Walks

    Full text link
    The Grover walk, which is related to the Grover's search algorithm on a quantum computer, is one of the typical discrete time quantum walks. However, a localization of the two-dimensional Grover walk starting from a fixed point is striking different from other types of quantum walks. The present paper explains the reason why the walker who moves according to the degree-four Grover's operator can remain at the starting point with a high probability. It is shown that the key factor for the localization is due to the degeneration of eigenvalues of the time evolution operator. In fact, the global time evolution of the quantum walk on a large lattice is mainly determined by the degree of degeneration. The dependence of the localization on the initial state is also considered by calculating the wave function analytically.Comment: 21 pages RevTeX, 4 figures ep

    Linear semigroups with coarsely dense orbits

    Full text link
    Let SS be a finitely generated abelian semigroup of invertible linear operators on a finite dimensional real or complex vector space VV. We show that every coarsely dense orbit of SS is actually dense in VV. More generally, if the orbit contains a coarsely dense subset of some open cone CC in VV then the closure of the orbit contains the closure of CC. In the complex case the orbit is then actually dense in VV. For the real case we give precise information about the possible cases for the closure of the orbit.Comment: We added comments and remarks at various places. 14 page

    Topologically Driven Swelling of a Polymer Loop

    Full text link
    Numerical studies of the average size of trivially knotted polymer loops with no excluded volume are undertaken. Topology is identified by Alexander and Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration radius, and probability density distributions as functions of gyration radius are generated for loops of up to N=3000 segments. Gyration radii of trivially knotted loops are found to follow a power law similar to that of self avoiding walks consistent with earlier theoretical predictions.Comment: 6 pages, 4 figures, submitted to PNAS (USA) in Feb 200

    Finite Cluster Typical Medium Theory for Disordered Electronic Systems

    Get PDF
    We use the recently developed typical medium dynamical cluster (TMDCA) approach~[Ekuma \etal,~\textit{Phys. Rev. B \textbf{89}, 081107 (2014)}] to perform a detailed study of the Anderson localization transition in three dimensions for the Box, Gaussian, Lorentzian, and Binary disorder distributions, and benchmark them with exact numerical results. Utilizing the nonlocal hybridization function and the momentum resolved typical spectra to characterize the localization transition in three dimensions, we demonstrate the importance of both spatial correlations and a typical environment for the proper characterization of the localization transition in all the disorder distributions studied. As a function of increasing cluster size, the TMDCA systematically recovers the re-entrance behavior of the mobility edge for disorder distributions with finite variance, obtaining the correct critical disorder strengths, and shows that the order parameter critical exponent for the Anderson localization transition is universal. The TMDCA is computationally efficient, requiring only a small cluster to obtain qualitative and quantitative data in good agreement with numerical exact results at a fraction of the computational cost. Our results demonstrate that the TMDCA provides a consistent and systematic description of the Anderson localization transition.Comment: 20 Pages, 19 Figures, 3 Table

    Elliptic Genera and 3d Gravity

    Full text link
    We describe general constraints on the elliptic genus of a 2d supersymmetric conformal field theory which has a gravity dual with large radius in Planck units. We give examples of theories which do and do not satisfy the bounds we derive, by describing the elliptic genera of symmetric product orbifolds of K3K3, product manifolds, certain simple families of Calabi-Yau hypersurfaces, and symmetric products of the "Monster CFT." We discuss the distinction between theories with supergravity duals and those whose duals have strings at the scale set by the AdS curvature. Under natural assumptions we attempt to quantify the fraction of (2,2) supersymmetric conformal theories which admit a weakly curved gravity description, at large central charge.Comment: 50 pages, 9 figures, v2: minor corrections to section
    • …
    corecore