224 research outputs found

    Wetting to Non-wetting Transition in Sodium-Coated C_60

    Full text link
    Based on ab initi and density-functional theory calculations, an empirical potential is proposed to model the interaction between a fullerene molecule and many sodium atoms. This model predicts homogeneous coverage of C_60 below 8 Na atoms, and a progressive droplet formation above this size. The effects of ionization, temperature, and external electric field indicate that the various, and apparently contradictory, experimental results can indeed be put into agreement.Comment: 4 pages, 4 postscript figure

    Effect of in-plane line defects on field-tuned superconductor-insulator transition behavior in homogeneous thin film

    Full text link
    Field-tuned superconductor-insulator transition (FSIT) behavior in 2D isotropic and homogeneous thin films is usually accompanied by a nonvanishing critical resistance at low TT. It is shown that, in a 2D film including line defects paralle to each other but with random positions perpendicular to them, the (apparent) critical resistance in low TT limit vanishes, as in the 1D quantum superconducting (SC) transition, under a current parallel to the line defects. This 1D-like critical resistive behavior is more clearly seen in systems with weaker point disorder and may be useful in clarifying whether the true origin of FSIT behavior in the parent superconductor is the glass fluctuation or the quantum SC fluctuation. As a by-product of the present calculation, it is also pointed out that, in 2D films with line-like defects with a long but {\it finite} correlation length parallel to the lines, a quantum metallic behavior intervening the insulating and SC ones appears in the resistivity curves.Comment: 16 pages, 14 figure

    Coexistence of glassy antiferromagnetism and giant magnetoresistance (GMR) in Fe/Cr multilayer structures

    Full text link
    Using temperature-dependent magnetoresistance and magnetization measurements on Fe/Cr multilayers that exhibit pronounced giant magnetoresistance (GMR), we have found evidence for the presence of a glassy antiferromagnetic (GAF) phase. This phase reflects the influence of interlayer exchange coupling (IEC) at low temperature (T < 140K) and is characterized by a field-independent glassy transition temperature, Tg, together with irreversible behavior having logarithmic time dependence below a "de Almeida and Thouless" (AT) critical field line. At room temperature, where the GMR effect is still robust, IEC plays only a minor role, and it is the random potential variations acting on the magnetic domains that are responsible for the antiparallel interlayer domain alignment.Comment: 5 pages, 4 figure

    Important role of alkali atoms in A4C60

    Full text link
    We show that hopping via the alkali atoms plays an important role for the t1u band of A4C60 (A=K, Rb), in strong contrast to A3C60. Thus the t1u band is broadened by more than 40 % by the presence of the alkali atoms. The difference between A4C60 and A3C60 is in particular due to the less symmetric location of the alkali atoms in A4C60.Comment: 5 pages, revtex, 2 figures, submitted to Phys. Rev. B more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene

    Vertex-corrected tunneling inversion in superconductors: Pb

    Full text link
    The McMillan-Rowell tunneling inversion program, which extracts the electron-phonon spectral function α2F(Ω)\alpha^2F(\Omega) and the Coulomb pseudopotential μ∗\mu^* from experimental tunneling data, is generalized to include the lowest-order vertex correction. We neglect the momentum dependence of the electron-phonon matrix elements, which is equivalent to using a local approximation. The perturbation theory is performed on the imaginary axis and then an exact analytic continuation is employed to produce the density of states on the real axis. Comparison is made with the experimental data for Pb.Comment: 14 pages, typeset in ReVTeX, including three encapsulated postscript figure

    Electronic interactions in fullerene spheres

    Get PDF
    The electron-phonon and Coulomb interactions inC60_{60}, and larger fullerene spheres are analyzed. The coupling between electrons and intramolecular vibrations give corrections ∼1−10\sim 1 - 10 meV to the electronic energies for C60_{60}, and scales as R−4R^{-4} in larger molecules. The energies associated with electrostatic interactions are of order ∼1−4\sim 1 - 4 eV, in C60_{60} and scale as R−1R^{-1}. Charged fullerenes show enhanced electron-phonon coupling, ∼10\sim 10 meV, which scales as R−2R^{-2}. Finally, it is argued that non only C60−_{60}^{-}, but also C60−−_{60}^{--} are highly polarizable molecules. The polarizabilities scale as R3R^3 and R4R^4, respectively. The role of this large polarizability in mediating intermolecular interactions is also discussed.Comment: 12 pages. No figure

    Mean Field Theory of the Localization Transition

    Full text link
    A mean field theory of the localization transition for bosonic systems is developed. Localization is shown to be sensitive to the distribution of the random site energies. It occurs in the presence of a triangular distribution, but not a uniform one. The inverse participation ratio, the single site Green's function, the superfluid order parameter and the corresponding susceptibility are calculated, and the appropriate exponents determined. All of these quantities indicate the presence of a new phase, which can be identified as the {\it Bose-glass}.Comment: 4 pages, Revtex, 2 figures appende

    Possible first order transition in the two-dimensional Ginzburg-Landau model induced by thermally fluctuating vortex cores

    Full text link
    We study the two-dimensional Ginzburg-Landau model of a neutral superfluid in the vicinity of the vortex unbinding transition. The model is mapped onto an effective interacting vortex gas by a systematic perturbative elimination of all fluctuating degrees of freedom (amplitude {\em and} phase of the order parameter field) except the vortex positions. In the Coulomb gas descriptions derived previously in the literature, thermal amplitude fluctuations were neglected altogether. We argue that, if one includes the latter, the vortices still form a two- dimensional Coulomb gas, but the vortex fugacity can be substantially raised. Under the assumption that Minnhagen's generic phase diagram of the two- dimensional Coulomb gas is correct, our results then point to a first order transition rather than a Kosterlitz-Thouless transition, provided the Ginzburg-Landau correlation length is large enough in units of a microscopic cutoff length for fluctuations. The experimental relevance of these results is briefly discussed. [Submitted to J. Stat. Phys.]Comment: 36 pages, LaTeX, 6 figures upon request, UATP2-DB1-9

    Anomalous Quantum Diffusion at the Superfluid-Insulator Transition

    Full text link
    We consider the problem of the superconductor-insulator transition in the presence of disorder, assuming that the fermionic degrees of freedom can be ignored so that the problem reduces to one of Cooper pair localization. Weak disorder drives the critical behavior away from the pure critical point, initially towards a diffusive fixed point. We consider the effects of Coulomb interactions and quantum interference at this diffusive fixed point. Coulomb interactions enhance the conductivity, in contrast to the situation for fermions, essentially because the exchange interaction is opposite in sign. The interaction-driven enhancement of the conductivity is larger than the weak-localization suppression, so the system scales to a perfect conductor. Thus, it is a consistent possibility for the critical resistivity at the superconductor-insulator transition to be zero, but this value is only approached logarithmically. We determine the values of the critical exponents η,z,ν\eta,z,\nu and comment on possible implications for the interpretation of experiments

    Electron--Vibron Interactions and Berry Phases in Charged Buckminsterfullerene: Part I

    Full text link
    A simple model for electron-vibron interactions on charged buckminsterfullerene C60n−_{60}^{n-}, n=1,…5n=1,\ldots 5, is solved both at weak and strong couplings. We consider a single HgH_g vibrational multiplet interacting with t1ut_{1u} electrons. At strong coupling the semiclassical dynamical Jahn-Teller theory is valid. The Jahn-Teller distortions are unimodal for nn=1,2,4,5 electrons, and bimodal for 3 electrons. The distortions are quantized as rigid body pseudo--rotators which are subject to geometrical Berry phases. These impose ground state degeneracies and dramatically change zero point energies. Exact diagonalization shows that the semiclassical level degeneracies and ordering survive well into the weak coupling regime. At weak coupling, we discover an enhancement factor of 5/25/2 for the pair binding energies over their classical values. This has potentially important implications for superconductivity in fullerides, and demonstrates the shortcoming of Migdal--Eliashberg theory for molecular crystals.Comment: 29 pages (+7 figures, 3 available upon request), LATEX, report-number: BM515
    • …
    corecore