404 research outputs found

    Mars Atmosphere and Regolith COllector PrOcessor for Lander Operations Project

    Get PDF
    Proving a propellant production plant that can process the Martian atmosphere (and soil) will provide engineers with performance and operational control data that can be used for designing next generation and flight systems for future missions

    Comparison of Direct Solar Energy to Resistance Heating for Carbothermal Reduction of Regolith

    Get PDF
    A comparison of two methods of delivering thermal energy to regolith for the carbo thermal reduction process has been performed. The comparison concludes that electrical resistance heating is superior to direct solar energy via solar concentrators for the following reasons: (1) the resistance heating method can process approximately 12 times as much regolith using the same amount of thermal energy as the direct solar energy method because of superior thermal insulation; (2) the resistance heating method is more adaptable to nearer-term robotic exploration precursor missions because it does not require a solar concentrator system; (3) crucible-based methods are more easily adapted to separation of iron metal and glass by-products than direct solar energy because the melt can be poured directly after processing instead of being remelted; and (4) even with projected improvements in the mass of solar concentrators, projected photovoltaic system masses are expected to be even lower

    Generating Aromatics From CO2 on Mars or Natural Gas on Earth

    Get PDF
    Methane to aromatics on Mars ( METAMARS ) is the name of a process originally intended as a means of converting Martian atmospheric carbon dioxide to aromatic hydrocarbons and oxygen, which would be used as propellants for spacecraft to return to Earth. The process has been demonstrated on Earth on a laboratory scale. A truncated version of the process could be used on Earth to convert natural gas to aromatic hydrocarbon liquids. The greater (relative to natural gas) density of aromatic hydrocarbon liquids makes it more economically feasible to ship them to distant markets. Hence, this process makes it feasible to exploit some reserves of natural gas that, heretofore, have been considered as being "stranded" too far from markets to be of economic value. In the full version of METAMARS, carbon dioxide is frozen out of the atmosphere and fed to a Sabatier reactor along with hydrogen (which, on Mars, would have been brought from Earth). In the Sabatier reactor, these feedstocks are converted to methane and water. The water is condensed and electrolyzed to oxygen (which is liquefied) and hydrogen (which is recycled to the Sabatier reactor). The methane is sent to an aromatization reactor, wherein, over a molybdenum-on-zeolite catalyst at a temperature 700 C, it is partially converted into aromatic hydrocarbons (specifically, benzene, toluene, and naphthalene) along with hydrogen. The aromatics are collected by freezing, while unreacted methane and hydrogen are separated by a membrane. Most of the hydrogen is recycled to the Sabatier reactor, while the methane and a small portion of the hydrogen are recycled to the aromatization reactor. The partial recycle of hydrogen to the aromatization reactor greatly increases the catalyst lifetime and eases its regeneration by preventing the formation of graphitic carbon, which could damage the catalyst. (Moreover, if graphitic carbon were allowed to form, it would be necessary to use oxygen to remove it.) Because the aromatics contain only one hydrogen atom per carbon atom, METAMARS produces four times as much propellant from a given amount of hydrogen as does a related process that includes the Sabatier reaction and electrolysis but not aromatization. In the terrestrial version of METAMARS, the Sabatier reactor and electrolyzer would be omitted, while the hydrogen/ methane membrane-separating membrane, the aromatization reactor, and the unreacted-gas-recycling subsystem would be retained. Natural gas would be fed directly to the aromatization reactor. Because natural gas consists of higher hydrocarbons in addition to methane, the aromatization subprocess should be more efficient than it is for methane alone

    Lunar Water Resource Demonstration (LWRD)

    Get PDF
    Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolit

    The 2010 Field Demonstration of the Solar Carbothermal Reduction of Regolith to Produce Oxygen

    Get PDF
    The Moon and other space exploration destinations are comprised of a variety of oxygen-bearing minerals, providing a virtually unlimited quantity of raw material which can be processed to produce oxygen. One attractive method to extract oxygen from the regolith is the carbothermal reduction process, which is not sensitive to variations in the mineral composition of the regolith. It also creates other valuable resources within the processed regolith, such as iron and silicon metals. Using funding from NASA, ORBITEC recently built and tested the Carbothermal Regolith Reduction Module to process lunar regolith simulants using concentrated solar energy. This paper summarizes the experimental test results obtained during a demonstration of the system at a lunar analog test site on the Mauna Kea volcano on Hawaii in February 2010

    Lunar Water Resource Demonstration

    Get PDF
    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts

    Atmospheric Processing Module for Mars Propellant Production

    Get PDF
    The multi-NASA center Mars Atmosphere and Regolith COllectorPrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methaneoxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO(sub 2) is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a H(sub 2)CO(sub 2) recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO(sub 2) hr for 14 hr, (3) the testing of the CO(sub 2) freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH(sub 4) hr and 71.3 g H(sub 2)O hr along with verification of their purity. The resulting 2.22 kg of CH(sub 2)O(sub 2) propellant per 14 hr day (including O(sub 2) from electrolysis of water recovered from regolith, which also supplies the H(sub 2) for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASAs new Mars exploration plans will be discussed

    Epidemiology of Influenza-like Illness during Pandemic (H1N1) 2009, New South Wales, Australia

    Get PDF
    To rapidly describe the epidemiology of influenza-like illness (ILI) during the 2009 winter epidemic of pandemic (H1N1) 2009 virus in New South Wales, Australia, we used results of a continuous population health survey. During July–September 2009, ILI was experienced by 23% of the population. Among these persons, 51% were unable to undertake normal duties for <3 days, 55% sought care at a general practice, and 5% went to a hospital. Factors independently associated with ILI were younger age, daily smoking, and obesity. Effectiveness of prepandemic seasonal vaccine was ≈20%. The high prevalence of risk factors associated with a substantially increased risk for ILI deserves greater recognition

    Mars Atmospheric Conversion to Methane and Water: An Engineering Model of the Sabatier Reactor with Characterization of Ru/Al2O3 for Long Duration Use on Mars

    Get PDF
    The Atmospheric Processing Module (APM) is a Mars In-Situ Resource Utilization (ISRU) technology designed to demonstrate conversion of the Martian atmosphere into methane and water. The Martian atmosphere consists of approximately 95 carbon dioxide (CO2) and residual argon and nitrogen. APM utilizes cryocoolers for CO2 acquisition from a simulated Martian atmosphere and pressure. The captured CO2 is sublimated and pressurized as a feedstock into the Sabatier reactor, which converts CO2 and hydrogen to methane and water. The Sabatier reaction occurs over a packed bed reactor filled with Ru/Al2O3 pellets. The long duration use of the APM system and catalyst was investigated for future scaling and failure limits. Failure of the catalyst was detected by gas chromatography and temperature sensors on the system. Following this, characterization and experimentation with the catalyst was carried out with analysis including x-ray photoelectron spectroscopy and scanning electron microscopy with elemental dispersive spectroscopy. This paper will discuss results of the catalyst performance, the overall APM Sabatier approach, as well as intrinsic catalyst considerations of the Sabatier reactor performance incorporated into a chemical model

    Catalytic Tar Reduction for Assistance in Thermal Conversion of Space Waste for Energy Production

    Get PDF
    The Trash to Gas (TtG) project investigates technologies for converting waste generated during spaceflight into various resources. One of these technologies was gasification, which employed a downdraft reactor designed and manufactured at NASA's Kennedy Space Center (KSC) for the conversion of simulated space trash to carbon dioxide. The carbon dioxide would then be converted to methane for propulsion and water for life support systems. A minor byproduct of gasification includes large hydrocarbons, also known as tars. Tars are unwanted byproducts that add contamination to the product stream, clog the reactor and cause complications in analysis instrumentation. The objective of this research was to perform reduction studies of a mock tar using select catalysts and choose the most effective for primary treatment within the KSC downdraft gasification reactor. Because the KSC reactor is operated at temperatures below typical gasification reactors, this study evaluates catalyst performance below recommended catalytic operating temperatures. The tar reduction experimentation was observed by passing a model tar vapor stream over the catalysts at similar conditions to that of the KSC reactor. Reduction in tar was determined using gas chromatography. Tar reduction efficiency and catalyst performances were evaluated at different temperatures
    corecore