19 research outputs found

    Thin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure

    No full text
    The very low pressure plasma spray (VLPPS) process operates at a pressure range of approximately 100 Pa. At this pressure, the plasma jet interaction with the surrounding atmosphere is very weak. Thus, the plasma velocity is almost constant over a large distance from the nozzle exit. Furthermore, at these low pressures the collision frequency is distinctly reduced and the mean free path is strongly increased. As a consequence, at low pressure the specific enthalpy of the plasma is substantially higher, but at lower density. These particular plasma characteristics offer enhanced possibilities to spray thin and dense ceramics compared to conventional processes which operate in the pressure range between 5 and 20 kPa. This paper presents some examples of gas-tight and electrically insulating coatings with low thicknesses < 50 mu m for solid oxide fuel cell applications. Furthermore, plasma spraying of oxygen conducting membrane materials such as perovskites is discussed

    Porous architecture of SPS thick YSZ coatings structured at the nanometer scale (~ 50 nm)

    No full text
    International audienceSuspension plasma spraying (SPS) is a fairly recent technology that is able to process sub-micrometersized or nanometer-sized feedstock particles and permits the deposition of coatings thinner (from 20 to 100 lm) than those resulting from conventional atmospheric plasma spraying (APS). SPS consists of mechanically injecting within the plasma flow a liquid suspension of particles of average diameter varying between 0.02 and 1 lm. Due to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick nanometer- or sub-micrometer-sized coatings exhibit better properties than conventional micrometer-sized ones (e.g., higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, particularly for energy production, energy saving, etc. Coatings structured at the nanometer scale exhibit nanometer-sized voids. Depending upon the selection of operating parameters, among which plasma power parameters (operating mode, enthalpy, spray distance, etc.), suspension properties (particle size distribution, powder mass percentage, viscosity, etc.), and substrate characteristics (topology, temperature, etc.), different coating architectures can be manufactured, from dense to porous layers, from connected to non-connected network. Nevertheless, the discrimination of porosity in different classes of criteria such as size, shape, orientation, specific surface area, etc., is essential to describe the coating architecture. Moreover, the primary steps of the coating manufacturing process affect significantly the coating porous architecture. These steps need to be further understood. Different types of imaging experiments were performed to understand, describe and quantify the pore level of thick finely structured ceramics coatings

    Suspension and Solution Plasma or HVOF Spraying

    No full text
    International audienceNanostructured materials offer significant improvements in engineering properties because their grain sizes are smaller than those of conventionally processed materials by a factor of almost 2 orders of magnitude (Ref 1). Since the mid- 1990s, research has been conducted using thermal spray technology for the deposition of finely structured or nanostructured coatings (Ref 2, 3). To produce finely structured coatings by thermal spray techniques, four routes have been suggeste

    Suspension Plasma Spraying: Process Characteristics and Applications

    No full text
    Suspension plasma spraying (SPS) offers the manufacture of unique microstructures which are not possible with conventional powdery feedstock. Due to the considerably smaller size of the droplets and also the further fragmentation of these in the plasma jet, the attainable microstructural features like splat and pore sizes can be downsized to the nanometer range. Our present understanding of the deposition process including injection, suspension plasma plume interaction, and deposition will be outlined. The drawn conclusions are based on analysis of the coating microstructures in combination with particle temperature and velocity measurements as well as enthalpy probe investigations. The last measurements with the water cooled stagnation probe gives valuable information on the interaction of the carrier fluid with the plasma plume. Meanwhile, different areas of application of SPS coatings are known. In this paper, the focus will be on coatings for energy systems. Thermal barrier coatings (TBCs) for modern gas turbines are one important application field. SPS coatings offer the manufacture of strain-tolerant, segmented TBCs with low thermal conductivity. In addition, highly reflective coatings, which reduce the thermal load of the parts from radiation, can be produced. Further applications of SPS coatings as cathode layers in solid oxide fuel cells (SOFC) and for photovoltaic (PV) applications will be presented
    corecore