3,767 research outputs found

    Probing Brownstein-Moffat Gravity via Numerical Simulations

    Full text link
    In the standard scenario of the Newtonian gravity, a late-type galaxy (i.e., a spiral galaxy) is well described by a disk and a bulge embedded in a halo mainly composed by dark matter. In Brownstein-Moffat gravity, there is a claim that late-type galaxy systems would not need to have halos, avoiding as a result the dark matter problem, i.e., a modified gravity (non-Newtonian) would account for the galactic structure with no need of dark matter. In the present paper, we probe this claim via numerical simulations. Instead of using a "static galaxy," where the centrifugal equilibrium is usually adopted, we probe the Brownstein-Moffat gravity dynamically via numerical NN-body simulations.Comment: 33 pages and 14 figures - To appear in The Astrophysical Journa

    Instabilities in the nonsymmetric theory of gravitation

    Get PDF
    We consider the linearized nonsymmetric theory of gravitation (NGT) within the background of an expanding universe and near a Schwarzschild metric. We show that the theory always develops instabilities unless the linearized nonsymmetric lagrangian reduces to a particular simple form. This theory contains a gauge invariant kinetic term, a mass term for the antisymmetric metric-field and a coupling with the Ricci curvature scalar. This form cannot be obtained within NGT. Next we discuss NGT beyond linearized level and conjecture that the instabilities are not a relic of the linearization, but are a general feature of the full theory. Finally we show that one cannot add ad-hoc constraints to remove the instabilities as is possible with the instabilities found in NGT by Clayton.Comment: 29 page

    A 10-hour period revealed in optical spectra of the highly variable WN8 Wolf-Rayet star WR 123

    Full text link
    Aims. What is the origin of the large-amplitude variability in Wolf-Rayet WN8 stars in general and WR123 in particular? A dedicated spectroscopic campaign targets the ten-hour period previously found in the high-precision photometric data obtained by the MOST satellite. Methods. In June-August 2003 we obtained a series of high signal-to-noise, mid-resolution spectra from several sites in the {\lambda}{\lambda} 4000 - 6940 A^{\circ} domain. We also followed the star with occasional broadband (Johnson V) photometry. The acquired spectroscopy allowed a detailed study of spectral variability on timescales from \sim 5 minutes to months. Results. We find that all observed spectral lines of a given chemical element tend to show similar variations and that there is a good correlation between the lines of different elements, without any significant time delays, save the strong absorption components of the Hei lines, which tend to vary differently from the emission parts. We find a single sustained periodicity, P \sim 9.8 h, which is likely related to the relatively stable pulsations found in MOST photometry obtained one year later. In addition, seemingly stochastic, large-amplitude variations are also seen in all spectral lines on timescales of several hours to several days.Comment: 6 pages, 4 figures, 2 tables, data available on-line, accepted in A&A Research Note

    Gravitational Waves in the Nonsymmetric Gravitational Theory

    Get PDF
    We prove that the flux of gravitational radiation from an isolated source in the Nonsymmetric Gravitational Theory is identical to that found in Einstein's General Theory of Relativity.Comment: 10 Page

    Bimetric Gravity Theory, Varying Speed of Light and the Dimming of Supernovae

    Get PDF
    In the bimetric scalar-tensor gravitational theory there are two frames associated with the two metrics {\hat g}_{\mu\nu} and g_{\mu\nu}, which are linked by the gradients of a scalar field \phi. The choice of a comoving frame for the metric {\hat g}_{\mu\nu} or g_{\mu\nu} has fundamental consequences for local observers in either metric spacetimes, while maintaining diffeomorphism invariance. When the metric g_{\mu\nu} is chosen to be associated with comoving coordinates, then the speed of light varies in the frame with the metric {\hat g}_{\mu\nu}. Observers in this frame see the dimming of supernovae because of the increase of the luminosity distance versus red shift, due to an increasing speed of light in the early universe. Moreover, in this frame the scalar field \phi describes a dark energy component in the Friedmann equation for the cosmic scale without acceleration. If we choose {\hat g}_{\mu\nu} to be associated with comoving coordinates, then an observer in the g_{\mu\nu} metric frame will observe the universe to be accelerating and the supernovae will appear to be farther away. The theory predicts that the gravitational constant G can vary in spacetime, while the fine-structure constant \alpha=e^2/\hbar c does not vary. The problem of cosmological horizons as viewed in the two frames is discussed.Comment: 22 pages, Latex file. No figures. Corrected typos. Added reference. Further references added. Further corrections. To be published in Int. J. Mod. Phys. D, 200

    Alien Registration- Moffat, Trueman C. (Mars Hill, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/34002/thumbnail.jp

    Problems and hopes in nonsymmetric gravity

    Full text link
    We consider the linearized nonsymmetric theory of gravitation (NGT) within the background of an expanding universe and near a Schwarzschild mass. We show that the theory always develops instabilities unless the linearized nonsymmetric lagrangian reduces to a particular simple form. This form contains a gauge invariant kinetic term, a mass term for the antisymmetric metric-field and a coupling with the Ricci curvature scalar. This form cannot be obtained within NGT. Based on the linearized lagrangian we know to be stable, we consider the generation and evolution of quantum fluctuations of the antisymmetric gravitational field (B-field) from inflation up to the present day. We find that a B-field with a mass m ~ 0.03(H_I/10^(13)GeV)^4 eV is an excellent dark matter candidate.Comment: 9 pages, 1 figure. Based on two talks by the authors at the 2nd International Conference on Quantum Theories and Renormalization Group in Gravity and Cosmology (IRGAC) 2006, Barcelon
    corecore