2 research outputs found
Predicting Missing Links via Local Information
Missing link prediction of networks is of both theoretical interest and
practical significance in modern science. In this paper, we empirically
investigate a simple framework of link prediction on the basis of node
similarity. We compare nine well-known local similarity measures on six real
networks. The results indicate that the simplest measure, namely common
neighbors, has the best overall performance, and the Adamic-Adar index performs
the second best. A new similarity measure, motivated by the resource allocation
process taking place on networks, is proposed and shown to have higher
prediction accuracy than common neighbors. It is found that many links are
assigned same scores if only the information of the nearest neighbors is used.
We therefore design another new measure exploited information of the next
nearest neighbors, which can remarkably enhance the prediction accuracy.Comment: For International Workshop: "The Physics Approach To Risk:
Agent-Based Models and Networks", http://intern.sg.ethz.ch/cost-p10
