82 research outputs found

    Estimate of the impact of background particles on the X-Ray Microcalorimeter Spectrometer on IXO

    Full text link
    We present the results of a study on the impact of particles of galactic (GCR) and solar origin for the X-ray Microcalorimeter Spectrometer (XMS) aboard an astronomical satellite flying in an orbit at the second Lagrangian point (L2). The detailed configuration presented in this paper is the one adopted for the International X-Ray Observatory (IXO) study, however the derived estimates can be considered a conservative limit for ATHENA, that is the IXO redefined mission proposed to ESA. This work is aimed at the estimate of the residual background level expected on the focal plane detector during the mission lifetime, a crucial information in the development of any instrumental configuration that optimizes the XMS scientific performances. We used the Geant4 toolkit, a Monte Carlo based simulator, to investigate the rejection efficiency of the anticoincidence system and assess the residual background on the detector.Comment: 18 pages, 9 figure

    An iterative destriping technique for diffuse background polarization data

    Get PDF
    We describe a simple but effective iterative procedure specifically designed to destripe Q and U Stokes parameter data as those collected by the SPOrt experiment onboard the International Space Station (ISS). The method is general enough to be useful for other experiments, both in polarization and total intensity. The only requirement for the algorithm to work properly is that the receiver knee frequency must be lower than the signal modulation frequency, corresponding in our case to the ISS orbit period. Detailed performances of the technique are presented in the context of the SPOrt experiment, both in terms of added rms noise and residual correlated noise.Comment: Accepted for publication by A&A (8 pages, 6 figures

    Effects of Thermal Fluctuations in the SPOrt Experiment

    Full text link
    The role of systematic errors induced by thermal fluctuations is analyzed for the SPOrt experiment with the aim at estimating their impact on the measurement of the Cosmic Microwave Background Polarization (CMBP). The transfer functions of the antenna devices from temperature to data fluctuations are computed, by writing them in terms of both instrument and thermal environment parameters. In addition, the corresponding contamination maps are estimated, along with their polarized power spectra, for different behaviours of the instabilities. The result is that thermal effects are at a negligible level even for fluctuations correlated with the Sun illumination provided their frequency ftff_{tf} is larger than that of the Sun illumination (fdayf_{day}) by a factor ftf/fday>30f_{tf} / f_{day} > 30, which defines a requirement for the statistical properties of the temperature behaviour as well. The analysis with actual SPOrt operative parameters shows that the instrument is only weakly sensitive to temperature instabilities, the main contribution coming from the cryogenic stage. The contamination on the E-mode spectrum does not significantly pollute the CMBP signal and no specific data cleaning seems to be needed.Comment: 12 pages, 11 figures. Accepted for publication in A&

    In-orbit background of X-ray microcalorimeters and its effects on observations

    Full text link
    Methods.There are no experimental data about the background experienced by microcalorimeters in the L2 orbit, and thus the particle background levels were calculated by means of Monte Carlo simulations: we considered the original design configuration and an improved configuration aimed to reduce the unrejected background, and tested them in the L2 orbit and in the low Earth orbit, comparing the results with experimental data reported by other X-ray instruments.To show the results obtainable with the improved configuration we simulated the observation of a faint, high-redshift, point source (F[0.5-10 keV]~6.4E-16 erg cm-2 s-1, z=3.7), and of a hot galaxy cluster at R200 (Sb[0.5-2 keV]=8.61E-16 erg cm-2 s-1 arcmin-2,T=6.6 keV). Results.First we confirm that implementing an active cryogenic anticoincidence reduces the particle background by an order of magnitude and brings it close to the required level.The implementation and test of several design solutions can reduce the particle background level by a further factor of 6 with respect to the original configuration.The best background level achievable in the L2 orbit with the implementation of ad-hoc passive shielding for secondary particles is similar to that measured in the more favorable LEO environment without the passive shielding, allowing us to exploit the advantages of the L2 orbit.We define a reference model for the diffuse background and collect all the available information on its variation with epoch and pointing direction.With this background level the ATHENA mission with the X-IFU instrument is able to detect ~4100 new obscured AGNs with F>6.4E-16 erg cm-2 s-1 during three years, to characterize cluster of galaxies with Sb(0.5-2 keV)>9.4E-16 erg cm-2 s-1 sr-1 on timescales of 50 ks (500 ks) with errors <40% (<12%) on metallicity,<16% (4.8%) on temperature,2.6% (0.72%) on the gas density, and several single-element abundances.Comment: the PDF has poor quality, it will be improved in the futur

    Monte-Carlo Simulations of the Suzaku-XRS Residual Background Spectrum

    Get PDF
    Cryogenic micro-calorimeters are suitable to detect small amounts of energy deposited by electromagnetic and nuclear interactions, which makes them attractive in a variety of applications on ground and in space. The only X-ray microcalorimeter that operated in orbit to date is the X-Ray Spectrometer on-board of the Japanese Suzaku satellite. We discuss the analysis of the components of its residual background spectrum with the support of Monte-Carlo simulations

    The BaR-SPOrt Experiment

    Get PDF
    BaR-SPOrt (Balloon-borne Radiometers for Sky Polarisation Observations) is an experiment to measure the linearly polarized emission of sky patches at 32 and 90 GHz with sub-degree angular resolution. It is equipped with high sensitivity correlation polarimeters for simultaneous detection of both the U and Q stokes parameters of the incident radiation. On-axis telescope is used to observe angular scales where the expected polarization of the Cosmic Microwave Background (CMBP) peaks. This project shares most of the know-how and sophisticated technology developed for the SPOrt experiment onboard the International Space Station. The payload is designed to flight onboard long duration stratospheric balloons both in the Northern and Southern hemispheres where low foreground emission sky patches are accessible. Due to the weakness of the expected CMBP signal (in the range of microK), much care has been spent to optimize the instrument design with respect to the systematics generation, observing time efficiency and long term stability. In this contribution we present the instrument design, and first tests on some components of the 32 GHz radiometer.Comment: 12 pages, 10 figures, Astronomical Telescopes and Instrumentation (Polaimetry in Astronomy) Hawaii August 2002 SPIE Meetin

    The mechanical and EM simulations of the CryoAC for the ATHENA X-IFU

    Get PDF
    The design phase of the CryoAC DM for the ATHENA X-IFU has concerned numerical simulations to exploit different fabrication possibilities. The mechanical simulations have accounted for the peculiar detector structure: 4 silicon chips asymmetrically suspended by means of 4 microbridges each. A preliminary study was performed to analyze the response to acceleration spectra in the frequency domain, shocks and time domain random displacement, prior to a real vibration test campaign. EM simulations to spot unwanted magnetic fields have been conducted as well. In this work we will show the latest advance in the design of the new detectors, showing the main results coming from various simulations

    SPOrt: an Experiment Aimed at Measuring the Large Scale Cosmic Microwave Background Polarization

    Get PDF
    SPOrt (Sky Polarization Observatory) is a space experiment to be flown on the International Space Station during Early Utilization Phase aimed at measuring the microwave polarized emission with FWHM = 7deg, in the frequency range 22-90 GHz. The Galactic polarized emission can be observed at the lower frequencies and the polarization of Cosmic Microwave Background (CMB) at 90 GHz, where contaminants are expected to be less important. The extremely low level of the CMB Polarization signal (< 1 uK) calls for intrinsically stable radiometers. The SPOrt instrument is expressly devoted to CMB polarization measurements and the whole design has been optimized for minimizing instrumental polarization effects. In this contribution we present the receiver architecture based on correlation techniques, the analysis showing its intrinsic stability and the custom hardware development carried out to detect such a low signal.Comment: 9 pages, 5 figures, conference proceeding, to appear in "Polarimetry in Astronomy", SPIE Symposium on 'Astronomical Telescopes and Instrumentation', Waikoloa, August 22-28 200

    ORIGIN: Metal Creation and Evolution from the Cosmic Dawn

    Get PDF
    ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z=10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts (z approx. 0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs. The ORIGIN mission includes a Transient Event Detector (coded mask with a sensitivity of 0.4 photon/sq cm/s in 10 s in the 5-150 keV band) to identify and localize 2000 GRBs over a five year mission, of which approx.65 GRBs have a redshift >7. The Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV, a field of view of 30 arcmin and large effective area below 1 keV has the sensitivity to study clusters up to a significant fraction of the virial radius and to map the denser parts of the WHIM (factor 30 higher than achievable with current instruments). The payload is complemented by a Burst InfraRed Telescope to enable onboard red-shift determination of GRBs (hence securing proper follow up of high-z bursts) and also probes the mildly ionized state of the gas. Fast repointing is achieved by a dedicated Controlled Momentum Gyro and a low background is achieved by the selected low Earth orbit
    • …
    corecore