890 research outputs found

    Time-scale analysis non-local diffusion systems, applied to disease models

    Full text link
    The objective of the present paper is to use the well known Ross-Macdonald models as a prototype, incorporating spatial movements, identifying different times scales and proving a singular perturbation result using a system of local and non-local diffusion. This results can be applied to the prototype model, where the vector has a fast dynamics, local in space, and the host has a slow dynamics, non-local in space

    Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries

    Get PDF
    In this work we study the behavior of a family of solutions of a semilinear elliptic equation, with homogeneous Neumann boundary condition, posed in a two-dimensional oscillating thin region with reaction terms concentrated in a neighborhood of the oscillatory boundary. Our main result is concerned with the upper and lower semicontinuity of the set of solutions. We show that the solutions of our perturbed equation can be approximated with ones of a one-dimensional equation, which also captures the effects of all relevant physical processes that take place in the original problem

    Correctors for the Neumann problem in thin domains with locally periodic oscillatory structure

    Full text link
    In this paper we are concerned with convergence of solutions of the Poisson equation with Neumann boundary conditions in a two-dimensional thin domain exhibiting highly oscillatory behavior in part of its boundary. We deal with the resonant case in which the height, amplitude and period of the oscillations are all of the same order which is given by a small parameter ϵ>0\epsilon > 0. Applying an appropriate corrector approach we get strong convergence when we replace the original solutions by a kind of first-order expansion through the Multiple-Scale Method.Comment: to appear in Quarterly of Applied Mathematic

    A nonlinear elliptic problem with terms concentrating in the boundary

    Full text link
    In this paper we investigate the behavior of a family of steady state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a ϵ\epsilon-neighborhood of a portion Γ\Gamma of the boundary. We assume that this ϵ\epsilon-neighborhood shrinks to Γ\Gamma as the small parameter ϵ\epsilon goes to zero. Also, we suppose the upper boundary of this ϵ\epsilon-strip presents a highly oscillatory behavior. Our main goal here is to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on Γ\Gamma, which depends on the oscillating neighborhood

    A scale-free network hidden in the collapsing polymer

    Full text link
    We show that the collapsed globular phase of a polymer accommodates a scale-free incompatibility graph of its contacts. The degree distribution of this network is found to decay with the exponent γ=1/(2c)\gamma = 1/(2-c) up to a cut-off degree dcL2cd_c \propto L^{2-c}, where cc is the loop exponent for dense polymers (c=11/8c=11/8 in two dimensions) and LL is the length of the polymer. Our results exemplify how a scale-free network (SFN) can emerge from standard criticality.Comment: 4 pages, 3 figures, address correcte

    The Neumann problem in thin domains with very highly oscillatory boundaries

    Full text link
    In this paper we analyze the behavior of solutions of the Neumann problem posed in a thin domain of the type Rϵ={(x1,x2)R2    x1(0,1),ϵb(x1)<x2<ϵG(x1,x1/ϵα)}R^\epsilon = \{(x_1,x_2) \in \R^2 \; | \; x_1 \in (0,1), \, - \, \epsilon \, b(x_1) < x_2 < \epsilon \, G(x_1, x_1/\epsilon^\alpha) \} with α>1\alpha>1 and ϵ>0\epsilon > 0, defined by smooth functions b(x)b(x) and G(x,y)G(x,y), where the function GG is supposed to be l(x)l(x)-periodic in the second variable yy. The condition α>1\alpha > 1 implies that the upper boundary of this thin domain presents a very high oscillatory behavior. Indeed, we have that the order of its oscillations is larger than the order of the amplitude and height of RϵR^\epsilon given by the small parameter ϵ\epsilon. We also consider more general and complicated geometries for thin domains which are not given as the graph of certain smooth functions, but rather more comb-like domains.Comment: 20 pages, 4 figure
    corecore