In this work we study the behavior of a family of solutions of a semilinear
elliptic equation, with homogeneous Neumann boundary condition, posed in a
two-dimensional oscillating thin region with reaction terms concentrated in a
neighborhood of the oscillatory boundary. Our main result is concerned with the
upper and lower semicontinuity of the set of solutions. We show that the
solutions of our perturbed equation can be approximated with ones of a
one-dimensional equation, which also captures the effects of all relevant
physical processes that take place in the original problem