6,753 research outputs found

    Stability of continuously pumped atom lasers

    Get PDF
    A multimode model of a continuously pumped atom laser is shown to be unstable below a critical value of the scattering length. Above the critical scattering length, the atom laser reaches a steady state, the stability of which increases with pumping. Below this limit the laser does not reach a steady state. This instability results from the competition between gain and loss for the excited states of the lasing mode. It will determine a fundamental limit for the linewidth of an atom laser beam.Comment: 4 page

    A detector for continuous measurement of ultra-cold atoms in real time

    Full text link
    We present the first detector capable of recording high-bandwidth real time atom number density measurements of a Bose Einstein condensate. Based on a two-color Mach-Zehnder interferometer, our detector has a response time that is six orders of magnitude faster than current detectors based on CCD cameras while still operating at the shot-noise limit. With this minimally destructive system it may be possible to implement feedback to stabilize a Bose-Einstein condensate or an atom laser.Comment: 3 pages, 3 figures, submitted to optics letter

    User-driven design of robot costume for child-robot interactions among children with cognitive impairment

    Get PDF
    The involvement of arts and psychology elements in robotics research for children with cognitive impairment is still limited. However, the combination of robots, arts, psychology and education in the development of robots could significantly contribute to the improvement of social interaction skills among children with cognitive impairment. In this article, we would like to share our work on building and innovating the costume of LUCA's robot, which incorporating the positive psychological perspectives and arts values for children with cognitive impairment. Our goals are (1) to educate arts students in secondary arts school on the importance of social robot appearance for children with cognitive impairment, and (2) to select the best costume for future child-robot interaction study with children with cognitive impairments

    Classical noise and flux: the limits of multi-state atom lasers

    Get PDF
    By direct comparison between experiment and theory, we show how the classical noise on a multi-state atom laser beam increases with increasing flux. The trade off between classical noise and flux is an important consideration in precision interferometric measurement. We use periodic 10 microsecond radio-frequency pulses to couple atoms out of an F=2 87Rb Bose-Einstein condensate. The resulting atom laser beam has suprising structure which is explained using three dimensional simulations of the five state Gross-Pitaevskii equations.Comment: 4 pages, 3 figure

    Artificial neural networks and player recruitment in professional soccer

    Get PDF
    The aim was to objectively identify key performance indicators in professional soccer that influence outfield players’ league status using an artificial neural network. Mean technical performance data were collected from 966 outfield players’ (mean SD; age: 25 ± 4 yr, 1.81 ±) 90-minute performances in the English Football League. ProZone’s MatchViewer system and online databases were used to collect data on 347 indicators assessing the total number, accuracy and consistency of passes, tackles, possessions regained, clearances and shots. Players were assigned to one of three categories based on where they went on to complete most of their match time in the following season: group 0 (n = 209 players) went on to play in a lower soccer league, group 1 (n = 637 players) remained in the Football League Championship, and group 2 (n = 120 players) consisted of players who moved up to the English Premier League. The models created correctly predicted between 61.5% and 78.8% of the players’ league status. The model with the highest average test performance was for group 0 v 2 (U21 international caps, international caps, median tackles, percentage of first time passes unsuccessful upper quartile, maximum dribbles and possessions gained minimum) which correctly predicted 78.8% of the players’ league status with a test error of 8.3%. To date, there has not been a published example of an objective method of predicting career trajectory in soccer. This is a significant development as it highlights the potential for machine learning to be used in the scouting and recruitment process in a professional soccer environment

    Pulsed pumping of a Bose-Einstein condensate

    Full text link
    In this work, we examine a system for coherent transfer of atoms into a Bose-Einstein condensate. We utilize two spatially separate Bose-Einstein condensates in different hyperfine ground states held in the same dc magnetic trap. By means of a pulsed transfer of atoms, we are able to show a clear resonance in the timing of the transfer, both in temperature and number, from which we draw conclusions about the underlying physical process. The results are discussed in the context of the recently demonstrated pumped atom laser.Comment: 5 pages, 5 figures, published in Physical Review

    Achieving peak brightness in an atom laser

    Get PDF
    In this paper we present experimental results and theory on the first continuous (long pulse) Raman atom laser. The brightness that can be achieved with this system is three orders of magnitude greater than has been previously demonstrated in any other continuously outcoupled atom laser. In addition, the energy linewidth of a continuous atom laser can be made arbitrarily narrow compared to the mean field energy of a trapped condensate. We analyze the flux and brightness of the atom laser with an analytic model that shows excellent agreement with experiment with no adjustable parameters.Comment: 4 pages, 4 black and white figures, submitted to Physical Revie

    Statistical Mechanics of Steiner trees

    Get PDF
    The Minimum Weight Steiner Tree (MST) is an important combinatorial optimization problem over networks that has applications in a wide range of fields. Here we discuss a general technique to translate the imposed global connectivity constrain into many local ones that can be analyzed with cavity equation techniques. This approach leads to a new optimization algorithm for MST and allows to analyze the statistical mechanics properties of MST on random graphs of various types

    Gradient echo memory in an ultra-high optical depth cold atomic ensemble

    Get PDF
    Quantum memories are an integral component of quantum repeaters - devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs to be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a 87^{87}Rb magneto-optical trap with a peak optical depth of 1000 for the D2 F=2→F′=3F=2 \rightarrow F'=3 transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble to implement the gradient echo memory (GEM) scheme. Our data shows a memory efficiency of 80±280\pm 2% and coherence times up to 195 μ\mus, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.Comment: 15 pages, 5 figure
    • …
    corecore