26,910 research outputs found
Large Negative Electronic Compressibility of LaAlO3-SrTiO3 Interfaces with Ultrathin LaAlO3 Layers
A two-dimensional electron liquid is formed at the n-type interface between
SrTiO3 and LaAlO3. Here we report on Kelvin probe microscopy measurements of
the electronic compressibility of this electron system. The electronic
compressibility is found to be negative for carrier densities of
\approx10^13/cm^2. At even smaller densities, a metal-to-insulator transition
occurs. These local measurements corroborate earlier measurements of the
electronic compressibility of LaAlO3-SrTiO3 interfaces obtained by measuring
the capacitance of macroscopic metal-LaAlO3-SrTiO3 capacitors
Experimental Studies of the NaCs 53Î 0 and a3ÎŁ+ States
We report high resolution measurements of 372 NaCs 53Π0(v, J) ro-vibrational level energies in the range 0 ≤ v ≤ 22. The data have been used to construct NaCs 53Π0 potential energy curves using the Rydberg–Klein-Rees and inverted perturbation approximation methods. Bound-free 53Π0(v, J) → 1(a)3Σ+ emission has also been measured, and is used to determine the repulsive wall of the 1(a)3Σ+ state and the 53Π0 → 1(a)3Σ+ relative transition dipole moment function. Hyperfine structure in the 53Π0 state has not been observed in this experiment. This null result is explained using a simple vector coupling model
Ehrenfest-time dependence of counting statistics for chaotic ballistic systems
Transport properties of open chaotic ballistic systems and their statistics
can be expressed in terms of the scattering matrix connecting incoming and
outgoing wavefunctions. Here we calculate the dependence of correlation
functions of arbitrarily many pairs of scattering matrices at different
energies on the Ehrenfest time using trajectory based semiclassical methods.
This enables us to verify the prediction from effective random matrix theory
that one part of the correlation function obtains an exponential damping
depending on the Ehrenfest time, while also allowing us to obtain the
additional contribution which arises from bands of always correlated
trajectories. The resulting Ehrenfest-time dependence, responsible e.g. for
secondary gaps in the density of states of Andreev billiards, can also be seen
to have strong effects on other transport quantities like the distribution of
delay times.Comment: Refereed version. 15 pages, 14 figure
A study in spherical accretion of self-gravitating fluids in a general relativistic framework
Includes abstract.Includes bibliographical references (leaves 46-49).A new general framework for studying relativistic spherical accretion of a self-gravitating fluid onto a central black hole is introduced in stationary coordinates for an observer at infinity. The important feature of gravitational backreaction due to a self-gravitating fluid on the metric is included in the model. The model is solved numerically for the most simple case of a polytropic fluid and compared to analytical solutions, which the model approximates in the "test-fluid" limit. The model is then focused on the accretion of a relativistic Fermi gas and the implications this might have on the rapid growth of supermassive black holes from clouds of sterile neutrino dark matter in the early universe. The results give good agreement with a Newtonian model of supermassive black hole growth called the symbiotic scenario
Semiclassical approach to the ac-conductance of chaotic cavities
We address frequency-dependent quantum transport through mesoscopic
conductors in the semiclassical limit. By generalizing the trajectory-based
semiclassical theory of dc quantum transport to the ac case, we derive the
average screened conductance as well as ac weak-localization corrections for
chaotic conductors. Thereby we confirm respective random matrix results and
generalize them by accounting for Ehrenfest time effects. We consider the case
of a cavity connected through many leads to a macroscopic circuit which
contains ac-sources. In addition to the reservoir the cavity itself is
capacitively coupled to a gate. By incorporating tunnel barriers between cavity
and leads we obtain results for arbitrary tunnel rates. Finally, based on our
findings we investigate the effect of dephasing on the charge relaxation
resistance of a mesoscopic capacitor in the linear low-frequency regime
Phase--coherence Effects in Antidot Lattices: A Semiclassical Approach to Bulk Conductivity
We derive semiclassical expressions for the Kubo conductivity tensor. Within
our approach the oscillatory parts of the diagonal and Hall conductivity are
given as sums over contributions from classical periodic orbits in close
relation to Gutzwiller's trace formula for the density of states. Taking into
account the effects of weak disorder and temperature we reproduce recently
observed anomalous phase coherence oscillations in the conductivity of large
antidot arrays.Comment: 11 pages, 2 figures available under request, RevTe
A comparison of soil moisture characteristics predicted by the Arya-Paris model with laboratory-measured data
Soil moisture characteristics predicted by the Arya-Paris model were compared with the laboratory measured data for 181 New Jersey soil horizons. For a number of soil horizons, the predicted and the measured moisture characteristic curves are almost coincident; for a large number of other horizons, despite some disparity, their shapes are strikingly similar. Uncertainties in the model input and laboratory measurement of the moisture characteristic are indicated, and recommendations for additional experimentation and testing are made
Phase-coherent transport in InN nanowires of various sizes
We investigate phase-coherent transport in InN nanowires of various diameters
and lengths. The nanowires were grown by means of plasma-assisted molecular
beam epitaxy. Information on the phase-coherent transport is gained by
analyzing the characteristic fluctuation pattern in the magneto-conductance.
For a magnetic field oriented parallel to the wire axis we found that the
correlation field mainly depends on the wire cross section, while the
fluctuation amplitude is governed by the wire length. In contrast, if the
magnetic field is oriented perpendicularly, for wires longer than approximately
200 nm the correlation field is limited by the phase coherence length. Further
insight into the orientation dependence of the correlation field is gained by
measuring the conductance fluctuations at various tilt angles of the magnetic
field.Comment: 5 pages, 5 figure
Universality in chaotic quantum transport: The concordance between random matrix and semiclassical theories
Electronic transport through chaotic quantum dots exhibits universal, system
independent, properties, consistent with random matrix theory. The quantum
transport can also be rooted, via the semiclassical approximation, in sums over
the classical scattering trajectories. Correlations between such trajectories
can be organized diagrammatically and have been shown to yield universal
answers for some observables. Here, we develop the general combinatorial
treatment of the semiclassical diagrams, through a connection to factorizations
of permutations. We show agreement between the semiclassical and random matrix
approaches to the moments of the transmission eigenvalues. The result is valid
for all moments to all orders of the expansion in inverse channel number for
all three main symmetry classes (with and without time reversal symmetry and
spin-orbit interaction) and extends to nonlinear statistics. This finally
explains the applicability of random matrix theory to chaotic quantum transport
in terms of the underlying dynamics as well as providing semiclassical access
to the probability density of the transmission eigenvalues.Comment: Refereed version. 5 pages, 4 figure
- …