44 research outputs found

    Indigenous amino acids in primitive CR meteorites

    Full text link
    CR meteorites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. EET92042, GRA95229 and GRO95577 were analyzed for their amino acid content using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatographymass spectrometry (GC-MS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 parts-per-million (ppm) to 249 ppm. GRO95577, however, is depleted in amino acids. The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the alpha-amino acids glycine, isovaline, alpha-aminoisobutyric acid (alpha-AIB), and alanine, with delta13C values ranging from +31.6per mil to +50.5per mil. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly indicate an extraterrestrial origin of these compounds. In addition, the relative abundances of alpha-AIB and beta-alanine in the Antarctic CR meteorites analyzed appear to correspond to the degree of aqueous alteration on their respective parent body.Comment: In press; To appear in the December 2007 issue of Meteoritics and Planetary Science, released March 200

    Nitrogen superfractionation in dense cloud cores

    Full text link
    We report new calculations of interstellar 15N fractionation. Previously, we have shown that large enhancements of 15N/14N can occur in cold, dense gas where CO is frozen out, but that the existence of an NH + N channel in the dissociative recombination of N2H+ severely curtails the fractionation. In the light of recent experimental evidence that this channel is in fact negligible, we have reassessed the 15N chemistry in dense cloud cores. We consider the effects of temperatures below 10 K, and of the presence of large amounts of atomic nitrogen. We also show how the temporal evolution of gas-phase isotope ratios is preserved as spatial heterogeneity in ammonia ice mantles, as monolayers deposited at different times have different isotopic compositions. We demonstrate that the upper layers of this ice may have 15N/14N ratios an order of magnitude larger than the underlying elemental value. Converting our ratios to delta-values, we obtain delta(15N) > 3,000 per mil in the uppermost layer, with values as high as 10,000 per mil in some models. We suggest that this material is the precursor to the 15N `hotspots' recently discovered in meteorites and IDPsComment: accepted by MNRA

    The Significance of Slope 1 Variation in Early Solar System Solids

    Get PDF
    As originally demonstrated by Clayton and co-workers, primitive meteorites and their components commonly display mass-independent oxygen isotopic variation. As a tool to understand this behaviour, a number of reference lines have been defined, with slopes of approximately 1. The Carbonaceous Chondrite Anhydrous Mineral (CCAM) line, derived predominantly from analyses of components in the Allende (CV3) meteorite, is the most widely used reference and has a slope of 0.94 plus or minus 0.01 (2 sigma). However, the fundamental significance of the CCAM line has been questioned. Based on the results of a UV laser ablation study of an Allende CAI (calcium-aluminumrich inclusion), it was suggested that a line of exactly slope 1 (Y&R line - Young and Russell line) was of more fundamental significance. SIMS (Secondary Ion Mass Spectrometry) analysis of chondrules from primitive CRs and related chondrites define a third, distinct slope 1 line, known as the Primitive Chondrule Minerals (PCM) line. Here we discuss the results of bulk oxygen isotope analysis of CO, CV and CR chondrites and various separated components, with the aim of better understanding the origin of slope 1 behaviour in early Solar System materials
    corecore