13,353 research outputs found

    Coupling Human Mobility and Social Ties

    Get PDF
    Studies using massive, passively data collected from communication technologies have revealed many ubiquitous aspects of social networks, helping us understand and model social media, information diffusion, and organizational dynamics. More recently, these data have come tagged with geographic information, enabling studies of human mobility patterns and the science of cities. We combine these two pursuits and uncover reproducible mobility patterns amongst social contacts. First, we introduce measures of mobility similarity and predictability and measure them for populations of users in three large urban areas. We find individuals' visitations patterns are far more similar to and predictable by social contacts than strangers and that these measures are positively correlated with tie strength. Unsupervised clustering of hourly variations in mobility similarity identifies three categories of social ties and suggests geography is an important feature to contextualize social relationships. We find that the composition of a user's ego network in terms of the type of contacts they keep is correlated with mobility behavior. Finally, we extend a popular mobility model to include movement choices based on social contacts and compare it's ability to reproduce empirical measurements with two additional models of mobility

    Effective tensor forces and neutron rich nuclei

    Full text link
    We study the effects of the tensor term of the effective nucleon-nucleon interaction on nuclear excited states. Our investigation has been conducted by using a self-consistent Random Phase Approximation approach. We investigate various nuclei in different regions of the isotopes chart. Results for a set of calcium isotopes are shown.Comment: 4 pages, 4 figures, 1 table Proc. 10th International Spring Seminar on Nuclear Physics New Quests in Nuclear Structure, Vietri Sul Mare, May 21-25, 201

    Quasars at z=6: the survival of the fittest

    Full text link
    The Sloan Digital Sky survey detected luminous quasars at very high redshift, z>6. Follow-up observations indicated that at least some of these quasars are powered by supermassive black holes (SMBHs) with masses in excess of billion solar masses. SMBHs, therefore, seem to have already existed when the Universe was less than 1 Gyr old, and the bulk of galaxy formation still has to take place. We investigate in this paper to which extent accretion and dynamical processes influence the early growth of SMBHs. We assess the impact of (i) black hole mergers, (ii) the influence of the merging efficiency and (iii) the negative contribution due to dynamical effects which can kick black holes out of their host halos (gravitational recoil). We find that if accretion is always limited by the Eddington rate via a thin disc, the maximum radiative efficiency allowed to reproduce the LF at z=6 is of order 12%, when the adverse effect of the gravitational recoil is taken into consideration. Dynamical effects cannot be neglected in studies of high-redshift SMBHs. If black holes can accrete at super-critical rate during an early phase, reproducing the observed SMBH mass values is not an issue, even in the case that the recoil velocity is in the upper limits range, as the mass ratios of merging binaries are skewed towards low values, where the gravitational recoil effect is very mild. We propose that SMBH growth at early times is very selective, and efficient only for black holes hosted in high density peak halos.Comment: Accepted for publication in the ApJ. 9 pages, 6 b/w figure

    Translocating the blood-brain barrier using electrostatics

    Get PDF
    Copyright © 2012 Ribeiro,Domingues, Freire,Santos and Castanho. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.Mammalian cell membranes regulate homeostasis, protein activity, and cell signaling. The charge at the membrane surface has been correlated with these key events. Although mammalian cells are known to be slightly anionic, quantitative information on the membrane charge and the importance of electrostatic interactions in pharmacokinetics and pharmacodynamics remain elusive. Recently, we reported for the first time that brain endothelial cells (EC) are more negatively charged than human umbilical cord cells, using zeta-potential measurements by dynamic light scattering. Here, we hypothesize that anionicity is a key feature of the blood-brain barrier (BBB) and contributes to select which compounds cross into the brain. For the sake of comparison, we also studied the membrane surface charge of blood components—red blood cells (RBC), platelets, and peripheral blood mononuclear cells (PBMC).To further quantitatively correlate the negative zeta-potential values with membrane charge density, model membranes with different percentages of anionic lipids were also evaluated. From all the cells tested, brain cell membranes are the most anionic and those having their lipids mostly exposed, which explains why lipophilic cationic compounds are more prone to cross the blood-brain barrier.Fundação para a Ciência e Tecnologia — Ministério da Educação e Ciência (FCT-MEC, Portugal) is acknowledged for funding (including fellowships SFRH/BD/42158/2007 to Marta M.B. Ribeiro, SFRH/BD/41750/2007 to Marco M. Domingues and SFRH/BD/70423/2010 to João M. Freire) and project PTDC/QUI-BIQ/119509/2010. Marie Curie Industry-Academia Partnerships and Pathways (European Commission) is also acknowledged for funding (FP7-PEOPLE-2007-3-1-IAPP, Project 230654)

    Enhancement of vortex pinning in superconductor/ferromagnet bilayers via angled demagnetization

    Full text link
    We use local and global magnetometry measurements to study the influence of magnetic domain width w on the domain-induced vortex pinning in superconducting/ferromagnetic bilayers, built of a Nb film and a ferromagnetic Co/Pt multilayer with perpendicular magnetic anisotropy, with an insulating layer to eliminate proximity effect. The quasi-periodic domain patterns with different and systematically adjustable width w, as acquired by a special demagnetization procedure, exert tunable vortex pinning on a superconducting layer. The largest enhancement of vortex pinning, by a factor of more than 10, occurs when w ~ 310 nm is close to the magnetic penetration depth.Comment: 5 pages, 3 figures, accepted to Phys. Rev. B, Rapid Communication

    Influence of Pyrolysis Parameters on the Performance of CMSM

    Get PDF
    Carbon hollow fiber membranes have been prepared by pyrolysis of a P84/S-PEEK blend. Proximate analysis of the precursor was performed using thermogravimetry (TGA), and a carbon yield of approximately 40% can be obtained. This study aimed at understanding the influence of pyrolysis parameters—end temperature, quenching effect, and soaking time—on the membrane properties. Permeation experiments were performed with N2, He, and CO2. Scanning electron microscopy (SEM) has been done for all carbon hollow fibers. The highest permeances were obtained for the membrane submitted to an end temperature of 750°C and the highest ideal selectivities for an end temperature of 700°C. In both cases, the membranes were quenched to room temperatur

    The influence of chain orientation in the electric behaviour of polymer diodes

    Get PDF
    Recently some experimental results have showed that the spatial alignment of conjugated polymer chains on nanometre length scales can influence the behaviour of polymer-based electronic devices, such as light-emitting diodes, field effect transistors, and photovoltaic cells. The effects of chain orientation at electrode-polymer interfaces on the charge injection process and charge mobility through the polymer layer are not well understood. In this work we use a generalized dynamical Monte Carlo method to study the influence of different polymer chain orientation relative to the electrodes surface on the electric behaviour of single-layer polymer diode, namely density current and charge density.Fundação para a Ciência e a Tecnologia (FCT) - POCTI/CTM/41574/2001; CONC-REEQ/443/EEI/2005; SFRH/BD/22143/2005FEDE

    Computer simulation of hole distribution in polymeric materials

    Get PDF
    Polymers have been known for their flexibility and easy processing into coatings and films, which made them suitable to be applied in a variety of areas and in particular the growing area of organic electronics. The electronic properties of semiconducting polymers made them a serious rival in areas where until now inorganic materials were the most used, such as light emitting diodes or solar cells. Typical polymers can be seen as a network of molecular strands of varied lengths and orientations, with a random distribution of physical and chemical defects which makes them an anisotropic material. To further increase their performance, a better understanding of all aspects related to charge transport and space charge distribution in polymeric materials is required. The process associated with charge transport depends on the properties of the polymer molecules as well as connectivity and texture, and so we adopt a mesoscopic approach to build polymer structures. Changing the potential barrier for charge injection we can introduce holes in the polymer network and, by using a generalised Monte-Carlo method, we can simulate the transport of the injected charge through the polymer layer caused by imposing a voltage between two planar electrodes. Our results show that the way that holes distribute within polymer layer and charge localization in these materials is quite different from the inorganic ones.Fundação para a Ciência e a Tecnologia (FCT) – Programa Operacional “Ciência, Tecnologia, Inovação” – POCTI/CTM/41574/2001, CONC-REEQ/443/EEI/2005, SFRH/BD/22143/2005European Community Fund (FEDER

    Mesoscopic modelling of polymer-based optoelectronic devices

    Get PDF
    Substantial progress has been made in fabricating optoelectronic devices using polymers as an active material. In polymer light emitting diodes (PLEDs), a balanced injection of electrons and holes from the electrodes is fundamental to increase their performance. Using a mesoscopic model based on a generalized Monte-Carlo method, we studied the influence of changing zero-field barrier heights at both electrode/polymer interfaces in the performance of a PLED with an active layer of poly paraphenylenevinylene) (PPV). Our results show that by controlling the electrodes work functions it is possible to tune the region inside the device where charge recombination preferentially takes place.Fundação para a Ciência e a Tecnologia (FCT) Programa Operacional “Ciência , Tecnologia, Inovação” – POCTI/CTM/41574/2001, CONC-REEQ/443/EEI/2001 e SFRH/BD/22143/200
    corecore