1,153 research outputs found

    Effective Viscosity Determination for Lubrication Systems Using the Lincoln Ventmeter

    Get PDF
    The selection criteria for lubricating grease in rolling bearings are different from those for a lubrication system that provides the bearings with grease. For optimum performance in bearings, the main properties are related to lubrication, whereas for optimum performance in a lubrication system, the grease should fulfill flow criteria. The main flow properties of a grease are its viscosity at low shear rates (including shear thinning) and its yield stress. In this article, a simple and robust method is described to measure both parameters simultaneously. The method is based on measuring flow through a pipe, simulating the so-called venting process, which makes the method directly applicable to lubrication systems. The Ventmeter measurements are compared to those obtained with plate–plate and capillary flow rheometers. It will be shown that the measured effective viscosity can readily be used to predict the pressure drop in lubrication systems, which makes it possible to design the system for optimum performanc

    Stabilized vortex solitons in layered Kerr media

    Full text link
    In this letter we demonstrate the possibility of stabilizing beams with angular momentum propagating in Kerr media. Large propagation distances without filamentation can be achieved in layered media with alternating focusing and defocusing nonlinearities. Stronger stabilization can be obtained with the addition of an incoherent beam.Comment: 4 pages, 3 figures. We have removed the sentence "Thus, they erroneously point out to the existence of fully stabilized vortex solitons" in page 2, column 2, line 7-8, because it might be confusin

    TGF-β Suppresses β-Catenin-Dependent Tolerogenic Activation Program in Dendritic Cells

    Get PDF
    The mechanisms that underlie the critical dendritic cell (DC) function in maintainance of peripheral immune tolerance are incompletely understood, although the β-catenin signaling pathway is critical for this role. The molecular details by which β-catenin signaling is regulated in DCs are unknown. Mechanical disruption of murine bone marrow-derived DC (BMDC) clusters activates DCs while maintaining their tolerogenic potential and this activation is associated with β-catenin signaling, providing a useful model with which to explore tolerance-associated β-catenin signaling in DCs. In this report, we demonstrate novel molecular features of the signaling events that control DC activation in response to mechanical stimulation. Non-canonical β-catenin signaling is an essential component of this tolerogenic activation and is modulated by adhesion molecules, including integrins. This unique β-catenin-dependent signaling pathway is constitutively active at low levels, suggesting that mechanical stimulation is not necessarily required for induction of this unique activation program. We additionally find that the immunomodulatory cytokine TGF-β antagonizes β-catenin in DCs, thereby selectively suppressing signaling associated with tolerogenic DC activation while having no impact on LPS-induced, β-catenin-independent immunogenic activation. These findings provide new molecular insight into the regulation of a critical signaling pathway for DC function in peripheral immune tolerance

    Guiding-center dynamics of vortex dipoles in Bose-Einstein condensates

    Full text link
    A quantized vortex dipole is the simplest vortex molecule, comprising two counter-circulating vortex lines in a superfluid. Although vortex dipoles are endemic in two-dimensional superfluids, the precise details of their dynamics have remained largely unexplored. We present here several striking observations of vortex dipoles in dilute-gas Bose-Einstein condensates, and develop a vortex-particle model that generates vortex line trajectories that are in good agreement with the experimental data. Interestingly, these diverse trajectories exhibit essentially identical quasi-periodic behavior, in which the vortex lines undergo stable epicyclic orbits.Comment: 4 pages, 2 figure

    3D fiber orientation in atherosclerotic carotid plaques

    Get PDF
    Atherosclerotic plaque rupture is the primary trigger of fatal cardiovascular events. Fibrillar collagen in atherosclerotic plaques and their directionality are anticipated to play a crucial role in plaque rupture. This study aimed assessing 3D fiber orientations and architecture in atherosclerotic plaques for the first time. Seven carotid plaques were imaged ex-vivo with a state-of-the-art Diffusion Tensor Imaging (DTI) technique, using a high magnetic field (9.4 Tesla) MRI scanner. A 3D spin-echo sequence with uni-polar diffusion sensitizing pulsed field gradients was utilized for DTI and fiber directions were assessed from diffusion tensor measurements. The distribution of the 3D fiber orientations in atherosclerotic plaques were quantified and the principal fiber orientations (circumferential, longitudinal or radial) were determined. Overall, 52% of the fiber orientations in the carotid plaque specimens were closest to the circumferential direction, 34% to the longitudinal direction, and 14% to the radial direction. Statistically no significant difference was measured in the amount of the fiber orientations between the concentric and eccentric plaque sites. However, concentric plaque sites showed a distinct structural organization, where the principally longitudinally oriented fibers were closer the luminal side and the principally circumferentially oriented fibers were located more abluminally. The acquired unique information on 3D plaque fiber direction will help understanding pathobiological mechanisms of atherosclerotic plaque progression and pave the road to more realistic biomechanical plaque modeling for rupture assessment.</p
    • …
    corecore