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Waviness Deformation in Starved
Covemer 8 EHL Circular Contacts

Faculty of Mechanical Engineering,

Department of Enginering Fluid Dynamics, By means of numerical simulations the deformation of transverse and isotropic harmonic

7500 ESEﬁgghzejjz waviness in EHL circular contacts under pure rolling has been studied in relation to the
The Netherlands’ lubricant supply to the contact. In earlier work the deformation of waviness under pure
rolling in a fully flooded contact was shown to depend on a single non-dimensional
G Berger wgvelength parameter. In terms of this. parameFer §hort wavel.engths deform very little. In
Laboratoire de Mécanique. es Contacts this paper the efft_ect qf starvation on thls beha\_/lor is shown. First, the steady state_smooth
UMR CNRS 5514' surface proble_m is dlscussed as an |_ntroduct|0n and as a refere_nce proble_m. It is .|Ilus-
INSA de Lyon’ trated in detail how the entire film thickness level decreases with decreasing lubricant

supply. Subsequently, results are presented for the time dependent problem with waviness
moving through the contact under pure rolling. The relative deformed amplitude of the
waviness inside the contact is shown to depend on the same non-dimensional wavelength
parameter as before, but also on the degree of starvation. A smaller lubricant supply leads
P. M Lugt to a larger reduction of the waviness_, amplitude inside t_he contact. Finally, it is shown that
S to an acceptable accuracy the relative deformed amplitude of the starved problem can be
predicted by the formula for the fully flooded problem if the generalized wavelength

20 Ave. A. Einstein,
69621, Villeurbanne Cedex,
France

SKF Engineering & Research Centre,

3430 DF}ONES\TVS;;E' parameter is modified using the reduction factor of t_he central film thickness for thg
The Netherlan ds: staryed steady state smooth contact. For this reduction factor an accurate formula is
available and as a result also for starved contacts by means of a component wise ap-
proach a crude estimate of the deformed surface micro-geometry (roughness) inside a
contact can be obtained quite easily ndiOl: 10.1115/1.1572514
Introduction fully flooded inlet. A more realistic assumption is that the inflow

to the contact is the combined result of a layer of oil left behind on
Mhe track by the previous conta@tossibly on top of a residual
. . r'1°'ayer of thickener or worked greasand some reflow mechanisms
pressure gengratlon starts Is assu_med tcﬁqbetakgrj_ far away acting in the time between overrollings. These reflow mechanisms
fro".‘.the !—|ert2|an contact. In analytical studies th_|s |nIe_t boundaa'epend on the operating conditions and for high speeds, or thin
position is taken infinetely far away. In numerical simulationg, ers the contacts do not attain the fully flooded film thickness
some finite domain must be taken, which is chosen such that &5 se of “starvation:” The supply of lubricant is such that the
inlet boundary is sufficiently far from the contact so as to approXisiariing point of the pressure generation is so much closer to the
mate the fully flooded situation for which the generated film thicksontact that the generated film thickness is significantly smaller
ness reaches its maximum value. However, when looking at thgy the value one would expect based on fully flooded theory.
conditions under which most EHL contacts operate in practic@nhe occurrence of “starvation” for high speeds can be clearly
e.g. in bearings, it seems far from realistic to assume that theggstrated experimentally on a ball on disk apparatus, [4¢2].
contacts are fully flooded. . . ~With increasing speed the film thickness increases until beyond a
Firstly, most bearings are lubricated with grease. Modelling ditertain speed the curve levels off and even decreases with increas-
ferent aspects of grease lubrication is extremely difficult. Muciig speed.
experimental research is still needed to identify the different The insights given above are the result of many studies of the
(physica) mechanisms that may play a role and the complicateglarved lubrication problem and grease lubrication. The reader is
rheological behavior of grease and the changes of its propertiegdferred to[3] and [4] for a more detailed overview and refer-
time increases the complexity of the matter. One of the possildaces. One of the earliest studies of the starved EHL problem was
mechanisms is that in the initial overrollings most of the grease ¢arried out by Wedeven et db]. In their work the film thickness
pushed to the side and a layer of thickener or worked grease is lgftiuction due to starvation is related to the inlet conditions, in
on the track. The long-life performance is then determined byparticular the inlet location and inlet film thickness. Other charac-
situation in which this pushed aside grease acts as a reserteiistic early works are the work of Chil] and related to star-
which somehow releases base-oil to the track, which is then useation is the work of Pemberton and Camef@i in which the
to generate a film. Clearly thdase oil supply to the contact will flow around and into the contact is illuminated. The starved EHL
then depend on the speed conditidtisie between overrollings problem was studied theoretically using a Grubin line contact type
and it seems unlikely that it will be accurately represented byd analysis by Wolveridge],7], and numerical simulation results
fully flooded inlet condition. The second reason why fully floodedor point contacts were presented by Ranger ef&land Ham-
conditions may be rare in practice is that, even if the bearing igck and Dowsori9]. However, in these works the inlet location
lubricated with oil, the amount of oil in the bearing is often lim-tself is taken as the input variable. The advantage is that the
ited as too much oil would lead to unacceptably large frictiondlroblem can then be analyzed with the standard solvers for the
losses, e.g., by churning. fully flooded problem. However, the resulting film reduction for-
From the above it can be concluded that the input to a givéRulas are not so well suited to predict the film reduction due to

contact often is not a real pool of lubricant which would ensure garvation in a practical situation because the inlet is a free bound-
ary and its location will depend on the operating conditions. An

Contributed by the Tribology Division for publication in the ASMBURNAL OF algorithm that facilitates the simulation of starvation/cavitation
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that the inlet to the contact is fully flooded: The point whe
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in a study of the starved steady state EHL circular contact prob-
lem. Their work emphasizes the relevance of the starved problem Starved
for understanding grease lubricated contacts, [8€e-14,15. A
very practical result is a formula predicting the film thickness y
reduction due to starvation in relation to the thickness of the lu-

bricant layer supplied to the contact, 444].

So far all studies of the starved problem were restricted to the
steady state situation. The transient problem was first addressec
by Wijnant[16,17 who studied the influence of starvation on the
dynamics (stiffness and dampingof the EHL contact. In this
study the surfaces were assumed to be perfectly smooth. A logical A-A
next step is to study the influence of surface features or surface
roughness on the performance of starved contacts, e.g., see Du
mont et al.[18], where the influence of certain specific features - . x
(pits) on the film formation is investigated. A systematic approach A-A
to the deformation of waviness under starved conditions is the
subject of this paper.

In earlier work[19-21] for the fully flooded problem it was Starved | Pressure | Starved
shown that there is a unifying mechanism which controls defor- : :
mation of waviness in EHL contacts. Under pure rolling the de- h '
formation of harmonic waviness is as a function of a single di- : :
mensionless parameter representing the ratio of waviness
wavelength to inlet length of the contd@2,23). It can be seen as
a generalized wavelength parameter. In terms of this parameter
high frequency components deform very little whereas low fre- h :

guency components are almost completely deformed. The behav- b, ; B
ior was shown to occur in line and point contacts, and equally for Rt / l
transverse, isotropic, and longitudinal patterns. The results could

be represented in a simple formula which can be used as an engi- : !

neering tool to predict a deformed surface microgeometry given : '
the operating conditions and undeformed microgeometry by ap-
plying it to each of the Fourier components of ttreeasurefl Fig. 1 lllustration of pressurized and cavitated  /starved region
microgeometry and subsequently computing the inverse Fourieran EHL contact with limited lubricant supply at the inlet
transform, see Masen et §R4].

The aim of the present work is to investigate how the deforma-
tion of waviness in a circular EHL contact under pure roIIingtg

conditions is effected by starvation. For this purpose numerici'€ Viscosityn will be taken according to the Roelands equation

H — 8 1 — 3
simulations have been carried out measuring the deformation[@f] Using «=1.7 10 ® [GPa "] and 7,=8.9 10 ° [Pa.4. The
transverse and isotropic waviness under pure rolling as a functig@nSityp is assumed to depend on the pressure according to the
of load conditions, wavelength, pattern orientation, and degree BpWson and Higginson equati¢@7].

starvation. To obtain a unique solution, E€l) is subjected to the comple-
mentarity condition:
Equations P(X,Y,T)(1-6(X,Y,T))=0 )

The model used here to describe the starved EHL contact is thih
model of Chevalier et al., s¢&2-14,19, but extended to account

) . : ¢ S P(X,Y,T)=0 3)
for transient effects. The complete model is described in detail in
[16] and has been succesfully applied to the study of the dynamisd
of a starved contact, s¢&6,17. This starvation/cavitation model 0<B(X.Y,T)=<1 @)

is based on the work of Elrod0,11]. An additional variable? is
introduced representing the degree to which the lubricant film is With these conditions Eq.l) is an equation ford with 0< ¢
filled with oil, the so-called fractional film content. #<1 the <1 andP=0 in the “starved” or “cavitated” regions. In pressur-
contact is(locally) starved and the pressure equals the cavitatidred regions it is an equation fé&*>0 with #=1. Note that Eq.
pressure. The variablecan be included in the Reynolds equation(1) for #=1 simplifies to the usual Reynolds equation. In earlier
see Bayada et a[25] leading to a single equation that serves astudies starved lubricant supply was simulated by varying the lo-
an equation for the pressure in pressurized regions, and as a azation of the inlet boundary for a fully flooded model, $8¢9].
ette flow mass conservation equation fan the cavitated/starved However, in reality the boundary between the starved/cavitated
regions. and pressurized region is a free boundary with its location depend-
In terms of the dimensionless variables defined in the nomeing on the amount of lubricant supplied and the operating condi-
clature the Reynolds equation for the starved time-dependeions. This is physically more realistic. In Fid a characteristic

problem is then given by: shape of the free boundary around an EHL contact is shown. Also
3 3 — — shown is a cross-section of the film at the centerline of the con-
i F'ii " i aif _ Q(PGH)_ d(pbH) -0 tact. It is assumed that in the inlet region a layer of oil with a
aX 7{ aX oY 7: oY aX T certain thickness is present. The thickness and the shape of this

(1) layer and the load conditions determine the location and shape of
) the boundary between the starved/cavitated and pressurized re-
with gion. This behavior can be simulated with the presented model.

67.U.R2 At the free boundary between a cavitated/starved and pressur-
= % ized region a mass flow continuity condition can be derived which
app should be satisfiedin a numerical algorithm upon convergence
Journal of Tribology APRIL 2004, Vol. 126 / 249
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with decreasing mesh sizeThis condition is known as the to fully flooded a larger domain was usee:4.5<X<1.5 and
Jakobsson-Floberg-OlssqdFO relation, seg28,29. For a de- —3<Y=<3. The steady state results presented in section 5 were
tailed discussion and its derivation for the transient two dimembtained using grid with 10261025 points.
sional problem sefl6,17. For the time dependent results presented in Sec. 6 two different
The boundary conditions for E@l) are the condition of ambi- second order discretization were used: For larger wavelengths a
ent pressure at the boundary of the dom&(X,Y,T)=0 for X  standard second order upstream discretization of the wedge and
=Xa, X=Xy, Y=Y, andY=Y,, as for the fully flooded prob- squeeze term denoted by SU2. For small wavelengths a narrow
lem, and an additional equation to determine the valué affthe upstream second order discretizatidiU2). In this scheme the
inlet boundaryX=X,. One way is to prescrib@(Y) but it is wedge and squeeze terms are treated in a combined way as a
physically more realistic to assume that a layer of oil with a ceresult of which it has a zero second order term in the truncation
tain thickness and shape is present at the surface in the inktor for several directions including the characteristic direction
Hi(Y), as schematically drawn in Fig. 1. In that case the equX=T. Consequently, on a given grid the artificial diffusivity is
tion for 6 at the boundary is: smaller and the result will be more accurate as will be illustrated.
This is particularly important when the amplitude of film thick-
Hoi(Y) (5) ness oscillations inside the contact region are measured and the
H(Xa,Y,T)’ wavelength of the waviness is small. The calculations for the tran-
sient problem were carried out using a grid with 25757 points
and a timestep equal to the mesh size. This latter choice is optimal
from the viewpoint of minimizing the error for the characteristic
directionX=T for both NU2 and SU2 schemes. For more details
regarding the two schemes the reader is referrdd 6¢32.

0(Xy,Y,T)=

with Hg;(Y) given. In this equation the value bffat the boundary
Xa, as all values ofH, is an unknown to be solved from the
dimensionless film thickness equation:
X% y?
HX,Y,T)=—-A(T)+ > + > +W(X,Y,T)

Steady State: Smooth Surfaces

2 P/(X",Y' T)dX'dY’ . . . . .
+— (6) First the effect of an increasing degree of starvation on the film
772 "2 2 . . . .
sV(X=X")Z+(Y=Y") thickness and pressure in the steady state case with ideally smooth

whereA is the dimensionless mutual approach of the two bodigyrfaces is illustrated. These steady state results will serve as a
andW is a function representing the undeformed roughness of tHference from which the results for the transient problem to be
surfaces. In this study a harmonic waviness on only one surfacd[§Sented in the next section can be understood. The load condi-

assumed. In that cas#’ can be given as: i

tion is characterized by the values of the Moes dimensionless
parameterdM =20 andL=10. If the surfaces are made of steel

X=X Y and the lubricant is a standard mineral oil this represents a mod-

W(X,Y,T)=Acog 2 TWE) CO< 2 WD) (7)  erately loaded contact with a maximum Hertzian pressure of about
. X Y 0.5 GPa. This case was chosen because for a moderately loaded

where X=X,+ ST with X, the start position of the wavinesS, contact the changes in the solutions with increasing degree of
=u, /u=1+2/2 with u, the velocity of the wavy surface, and: starvation are more easy to see in the graphs. The trends to be

— 5 observed for higher loads are not essentially different, but the

A= A;107 10maxX0OX=X/(Ay/2))%) (8) changes take place in smaller regions, see [@$o

This particular shape was chosen to avoid discontinuous derivaﬁ';'%rr;ethz. EEOWS the f%mtpurt]egf dr:?\??srlciﬂless pre?SL:]r_enlprt'oflle
tives, and to start the calculation with a smooth surface geome im thICkNESS as a function &rand ytior the case of an inie

A; denotes the amplitude of the undeformed waviness. The I layer with a thickness that is half the central film thickness for
formed amplitude of the pattern as a function of the operati € fully flooded casetlg=He/2. As for the fully flooded con-

conditions will be determined from the film thickness oscillation ct the pressure in the central region is roughly the Hertzian dry
according to: contact pressure. However, for the fully flooded case the pressure

in the inlet gradually rises, whereas for the starved problem in a
2A4=maxH(0,0,T) —minH(0,0,T) (9) large part of the inlet region the pressure is zero and the pressure
T T build up suddenly starts at a free boundary. This is due to the fact
gat pressure generation can only occur at a location once the gap
as become sufficiently small for the amount of lubricant to fill it.
I_other words, a nonzero pressure can only occur when the frac-
lonal film contenté satisfiesd=1. This can be seen from com-
paring the graph of(X,Y) with the graph ofP(X,Y). Noted that
3 6 exhibits a discontinuity at the free boundary on the inlet side. At
7 J LP(X,Y,T)dXdY=1 vT (10)  this point also the pressure gradient is discontinuous. The jump in
0 and the pressure gradient at the free boundary are related. They
. . should satisfy the so-called JFO condition. In the discrete scheme
Numerical Solution this will be the case upon convergence, i.e., with decreasing mesh
The Egs.(1)—(10) were discretized using a second order dissize, sed16,17].
cretization in space and time. The resulting discrete equations affhe location of the free boundary depends on the degree of
each timestep were solved iteratively using Multigrid techniquesarvation. This is shown in detail in Fig. 3 and 4. These figures
where the relaxation process around which the solver is built isshow cross sections of the solutions obtained with decreasing
mixed distributive Jacobi and Gauss-Seidel line relaxatiddy; . The figures show dimensionless pressBrdilm thickness
scheme. The complementarity condition is incorporated in the rd; and fractional film conteng as a function oX at Y=0 and as
laxation scheme. For the fast evaluation of the discrete elasicfunction of Y at X=0. With respect to the film thickness the
deformation integrals Multilevel Multi-Integratiof80] was used. figures show that with decreasitty,; the entire level of the film
For a detailed description of the basic elements of a Multigrithickness, and thus the central film thickness decreases. However,
solution algorithm for the EHL circular contact problem the readelso the film shape changes: the horseshoe shape with side-lobes
is referred to 31]. disappears leading to a nearly uniform film thickness for severely
Most calculations where carried out using a domaif.5<X  starved contacts. With respect to the pressure the figures show that
<1.5 and—2=<Y=<2. For low loads and a lubricant supply closehe smaller the layer of lubricant supplied to the contact, the closer

Finally, an equation of motion is needed which determines t
unknown integration functiotA(T). If acceleration terms are ne-
glected this equation reduces to the usual condition of force b
ance:
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-2.00 -2.50
Fig. 2 Dimensionless pressure P (top), film thickness H (cen- 0.4
ter) and fractional film content @ as a function of X and Y for
M=20, L=10. Starved contact: H/H =0.5.
Y55 5 05 0 05

-t

15
X
to the edge of the Hertzian contact circle the pressure generation

starts, and the larger the pressure gradient at the free boundaiy. 3 Dimensionless pressure P (top) and film thickness H

Together with the changes in the pressure spike that can be sémtiom ) as a function of X at the centerline Y=0 for the case

clearly in the figure this illustrates how with decreasidg, the M=20, L=10 and Hy/H=, 2, 1, 1/2, 1/4, and 1/8.

pressure profile approaches the Hertzian dry contact pressure. Fi-

nally, by the JFO condition the larger gradient and smaller film

thickness imply that the jump i at the free boundary will be thickness has been studied in detail by Chevalier ef3l4].

smaller as can seen from the graph¥). _ They found that the ratio of the central film thickness in the
Some quantitative results illustrating the numerical accuracy 8farved contact to the central film thickness under fully flooded

the steady-state results are given in the Tables 1 and 2. Thegfditions could be approximated by the following relation:
tables show the value of the computed minimum film thickness as

a function of the inlet layer thicknegslegree of starvationand R He r 1)
the mesh size of the computational domain. The tables show that Het Y1tr?

the computed values of minimum and central film thickness con-

verge in a second order manner to a limiting value as is consistevtierer =H; /(p(pn)H¢s) andyis a parameter € y<5. In[33]

with the fact that a second order discretization is used. Also tlilee behavior of this parameter in relation to the load conditions is

tables clearly show that the minimum and central film thicknesgudied in detail by looking at starved elliptic contacts.

with increasing degree of starvation converge to the same valuéVhen plotting the predictions of Eq11) two asymptotes can

reflecting the flattening of the film. be observed: — 0 andr — <« which giveR—r andR—1 respec-
The decrease of the central film thickness with decreasing layterely. Of these two, the asymptote for thin films is the most
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Fig. 4 Dimensionless pressure
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Y

P (top) and film thickness

(bottom ) at the line X=0 as a function of

H
Y for the case M
=20, L=10 and Hgy /Hy==, 2,1, 12, 1/4, and 1/8.

interesting, as it shows that for very thin oil films, the EHL film
thickness is the same as the film in front of the contact, with a
minor correction related to the compressibility. In other words: the
contact becomes very efficient in building up an oil film. Almost
all available oil is used to generate the film separating the surfaces
and the side-leakage is small, whereas in a fully flooded contact
most of the oil flows around the contact and only a small portion
actually passes through the central region.

The advantage of Eq11) is that it can easily be used in prac-
tice. One only needs an estimatetdf; but this can be obtained
from one of the film thickness formulas as the ones presented by
Hamrock and Dowsoh34] and Nijenbanning et a[.35].

In the literature alternative prediction formulas for the film
thickness reduction in starved contacts have been derived using a
Grubin type of analysis, s€é,7]. This approach gives formula
relatingH . /H; to the film thickness at the inlet boundary, in this
case the free boundary, for which generally no accurate approxi-
mation is available. For example, the formulation of the Grubin
analysis by Hookd36] can be modified easily to account for a
starved inlet. For that case one obtains:

He _(I(Hb/HC))3’4
Ho | Z(0)

whereH,, denotes the value of the film thickness at the location of
the inlet boundary and is defined by:

(12)

1
I(w):f MR- 9*dy (13)

=0 represents a fully flooded contact. The integration can be
carried out numerically and it follows that:

He He

—=~1-— 14

Het Hp (14)
When taking the solutions of the starved problem it can be shown
that Eq.(14) is quite accurate. However, it is not very well suited
for predictions as one needs to know the film thickness at the inlet
location, i.e., the free boundary which in general is unknown.
Only for the severely starved case this is easy to guelss,
~Hg S0 if Hy = wHs one then obtains:

HC_ w
H_Cf_ o+l

As can be verified using the results presented in Table 1(Hg.
gives a good prediction dfi./H;¢. Eq. (15 on the other hand is
only accurateH ;<H.;. For larger values oH,; it underesti-
mates the starved film thickness. This is not because the Grubin
analysis is not valid but because for these cases the assumption
Hp~H,; used to obtain Eq(15) from Eg.(14) is no longer jus-
tified asH,>Hy; .

(15)

Time Dependent: Waviness

Next the transient problem with a waviness moving through the
contact is addressed. The results presented are restricted to the

Table 1 Convergence of dimensionless central film thickness with decreasing mesh size for different degrees of starvation. M
=20, L=10
Hoi /Hcs
Ny X Ny % 5 2 1 1/2 1/4 1/8
(32+1)? 3.75010*! 3.699 10! 3.43510" 2.858 102 1.752101 8.546 102 4.006 102
(64+1)2 4118101 4.070101 3.76310! 2.996 10! 1.753101 8.986 102 4535102
(128+1)? 4212101 4163101 3.85010? 3.02310? 1.756 101 9.008 102 4535107
(256+1)2 4236101 4186101 3.87110! 3.03310! 1.756 101 9.014 102 4532102
(512+1)? 4242101 4192101 3.877101 3.03610? 1.756 101 9.016 102 4.530 102
(1024+1)2 4.243101 4194101 3.878 10! 3.037 10! 1.756 10! 9.015 102 4.530 102

252 / Vol. 126, APRIL 2004

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Transactions of the ASME



Table 2 Convergence of dimensionless minimum film thickness with decreasing mesh size for different degrees of starvation.

M=20, L=10.
HoiI /Hcf
Ny X Ny o 5 2 1 1/2 1/4 1/8

(32+1)? 2.59110* 2.58010* 2.37310* 2.013107? 1.376 10°* 7.60310°? 3.227 102
(64+1)? 2.84310* 2.816 10! 2.62410* 2.17910* 1.42210* 8.172 102 4.353 102
(128+1)? 2.890010* 2.85910* 2.67910* 2211101 1.447 10°* 8.340 10?2 4524107
(256+1)? 2.90310* 2.87310* 2.686 101 2.21510* 1.45210* 8.374 102 4.529 102
(512+1)? 2.905101 2.876 101 2.689101 2.217101 1.45310? 8.377 102 4.530 102
(1024+1)? 2.90510* 2.876 101 2.68910* 2217101 1.45310* 8.379 102 4.530 102

case of pure rollingz =0 (S=1). Figure 5 shows snapshots oftakenA;=H /5 and its dimensionless wavelengtiha=1/2. In

the dimensionless pressure profile, film thickness, and fractiorihg figure it can be seen that the waviness causes an oscillation of
film content obtained at a time a transverse waviness is fully ifilm thickness and pressure in the same way as in the fully flooded

side the contact. The conditions are the same as for the ste@dgblem. The wavelength of the oscillation equals the wavelength

state solution presented in Fig. 2. The waviness amplitude walkthe waviness because of the pure rolling condition. So, the

Fig. 5 Snapshot of the dimensionless pressure
film thickness H (bottom ) as a function of X and Y at a given
time for M=20, L=10, 3=0. Transverse waviness,
A, /a=x. Starved contact:

-2.00 -2.50

Journal of Tribology

HOil /Hcf= 0.5.

P (top), and

N Ja=1/2,

mechanism that the waviness moves through the contact only un-
dergoing a reduction in amplitude is not changed by the introduc-

tion of a starved inlet. However, the magnitude of the reduction is

effected by the degree of starvation as will be shown in this sec-
tion.

First an indication of the accuracy of the time dependent results
is given. In Table 3 the computed value Af/A; is given for
transverse waviness with a wavelengthh\dd= 0.5 and three val-
ues of the starvation parametdg; /H:;. In the table the values
obtained with the two different discretizatio®2 and NU2 of
the wedge and squeeze term are shown as a function of the mesh
size of the grid(and the timestep Firstly the table shows that
with decreasing mesh size and timestep the valuaG#; con-
verges. However, for this relatively short wavelength it can be
seen clearly that convergence only sets in once the grid is suffi-
ciently fine. Note that the results obtained with tBe2 scheme
tend to approach the limiting value from below. This is explained
by the artificial diffusivity of the scheme as a result of which on
coarse grids it exhibits amplitude decay of the waviness inside the
contact, and when taking the value A&f from the variations of
H(0,0) it is easily underestimated. The results obtained with the
NU2 scheme tend to approach the limiting value from above. This
implies that for cases where the waviness deformation is small it
tends to be much more accurate. This particularly applies to cases
close to fully flooded and for small wavelengths. However, the
results presented in the table also show that for the starved prob-
lem theNU2 results are not always more accurate. If the waviness
deformation is large, as is the case for a small valuél gf the
NU2 scheme tends to underestimate the deformation, or to over-
estimate the value &y . This can be seen in the results obtained
for Hy;=H¢/4. Finally, the table shows that the tendency of the
waviness deformation to increase with decreadihg is a real
trend as the changes &g/A; going from Hy,=H.; to Hgy;
=H./2 and fromHg=H./2 to Hy=H.{/4 are significantly
larger than the error in the value 8§ /A, that can be estimated
from comparing the results obtained on the finest grid and the next
coarser grid.

The trend of increasing waviness deformation with increasing
degree of starvatiofdecreasindH,;) is illustrated graphically in
Fig. 6. The figure shows the computed dimensionless pressure as
a function ofX at the lineY =0 for different values oH; /H;.

The figure shows that with decreasing layer thickness the level of
the film thickness decreases as was found for the steady state case.
For that problem it was found that the film thickness became more
uniform with increasing degree of starvation. In the transient
problem the same behavior is found which is now reflected in a
decreasing amplitude of the film oscillations with decreasing
value ofH,; /H;. Figure 6 illustrates that also the time depen-
dent solution for waviness with increasing degree of starvation
approaches the dry contact solution where the waviness would be
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Table 3 Convergence of relative amplitude of film thickness oscillations Ayl A; as afunction of mesh size  (number of gridpoints ).
Timestep hy=hy=h,. Conditions M=20, L=10, =0, Hy;/H=1, 1/2 and 1/4. Transverse waviness A,/a=1/2, \,/a=x.

HoiI /Hcf
1 1/2 1/4
Ny X Ny Sw NU2 Sw NU2 Sw2 NU2
(32+1)2 0.31 0.99 0.26 0.98 0.28 0.99
(64+1)2 0.46 0.97 0.36 0.77 0.18 0.69
(128+1)2 0.79 0.98 0.58 0.78 0.30 0.38
(256+1)? 0.95 0.99 0.74 0.79 0.32 0.32
deformed completely. Note that associated with the increasing de- Aq 1

formation of the waviness is an increase of the amplitude of the -~ = 3
pressure oscillations. Finally, in all cases shown the initial ampli- A 10151y M) V) +0.015F (A M) V)
tudeA; was taken the samé;=0.2H ;. For the small values of wheref(\,/\,) is a correction factor for the anisotropy of the
Hoii/H ¢ this implies that; is no longer small compared td; as  waviness. FOh =\, : f=1 and\=\,.
a result of which the waviness is not only subjected to a reductionBelow it is shown how this behavior is effected by starvation.
in amplitude but due to nonlinear effects also changes shape. Simulations have been performed for a range of values!of,
For the fully flooded problem it was shown that the rafig/A;  the wavelengti\/a, and different values of the starvation param-
depends only on a generalized wavelength defined as: eter Hy /H¢¢. Figure 7 shows the computed values Af/A;
_ _ presented a function &f andH,; /H; for transverse and isotro-
V=c(Ma)(@) ¥ 2 (16) pic waviness. For the same loading cases results are presented for
with ¢=\/(27°)/3 for elliptic contacts andt=(27)%* for line the fully flooded case, and valuek,/H=5, 2, 1, 1/2 and 1/4.
contact. The parametéF can be interpreted as the ratio of theThe drawn line in the figure gives the predictions according to
waviness wavelength to the “entrainment length” of the contacBduation(17). The figure shows that fok =2 the values are
see[22,23. To a good approximation the value &f;/A; for a close to the values for the fully flooded problem. Subsequently,

17

given case can be obtained from: with decreasingH; /H.;, a clear tendency of decreasifg/A;
2 ] Transverse Starved
TeT B omriy ' Eq. (i7)
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Fig. 6 Dimensionless pressure (top) and film thickness (bot- Fig. 7 Relative deformed amplitude A,/A; as a function of V
tom) as a function of X at the centerline of the contact  Y=0 for =c(Na)(a)¥¥L~2 and Hy, /H for transverse (top) and isotro-
different Hgy . M=20, L=10, X =0. Transverse waviness, A,/a pic (bottom ) waviness in a starved contact. The drawn line rep-
=12, N\, /a=c. Starved contact: Hg/H=%,1,1/2,1/3,1/4. resents the predictions of Eq.  (17).
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position, fixed inlet film thickness or flow continuity condition,

where the last situation seems to be the most realistic.
Meanwhile a crude way to scale the results may be to replace

the parameteV by a parameteW that is corrected for the effect

of starvation using the reduction of the entire film thickness level

that is caused by the limited oil supply:

V=V(He/Ho)? (18)

From a practical point of view this is a convenient extension as
for the the ratioH./H.; an approximate formula is available, see
Eq. (11). Figure 8 shows the results obtained presented as a func-
tion of V taking ¢=3/2. It appears that for both transverse and
isotropic waviness the results for the starved problem scale quite
well on and near the results for the fully flooded case. The scaling
is better for the severely starved cases than for the less starved
cases. The observed spread is partly explained by the fact that the
real mechanism is more complex than suggested by this simple
scaling. In addition there will be some effect of numerical inac-

Eq. (17,
09l I o é : curacy and of non-linearity. For smafl; the valueA;=H /5 is
LI sz rather large compared td. and when the waviness amplitude is
08 Ko e of the same order of magnitude as the starved film thickness the
0.7} kod 0 deformed pattern is not exactly harmonic anymore. Finally, other
06l %0 values of may give a better result but the value of 3/2 is pre-
’ A5 ferred because this is the same power as with whictppears in
dips]| ° 1 v
Ai o @ .
0.4} % 1 _
0.3 o ] Conclusion
02 oo | By means of numerical simulations the deformation of trans-
“T X, verse and isotropic harmonic waviness in EHL circular contacts
01} e o 1 under pure rolling has been studied in relation to the lubricant
% ; 1 =40 supply to the contact. For the fully flooded contact it was shown

o in earlier work that the deformation of harmonic waviness under
pure rolling is determined by a single non-dimensional parameter
which can be referred to as a non-dimensional wavelength. Short
wavelengths deform very little and the deformation increases with
increasing wavelength. A simple engineering formula was derived
that by applying it to each Fourier component of a roughness
profile can be used to computen approximation tpthe de-
formed roughness patterns. With separate studies for line and el-
liptic contacts, and for different orientation of the waviness pat-
tern it was shown that waviness deformation in EHL contacts is
can be seen, or, as was shown for a single case in Fig. 3, the mdegermined by a single unifying mechanism.
starved the contact, the larger the waviness deformation. Note thaOne of the few parameters not yet investigated was the effect of
for each value ofH. /H¢; a curve similar to the fully flooded the lubricant supply, or starvation which has been the subject of
curve is obtained but shifted by a certain amount. The same dhis paper. Starvation was modelled by introducing an additional
plies to the results for isotropic waviness. variable representing the fraction to which the film is filled with
The logical first explanation for the observed behavior seemsad, which allows the boundary between pressurized and cavitated/
be that starvation reduces the inlet length of the contact. Asstarved regions to be free. The steady state smooth surface prob-
result the ratio wavelength to entrainment length increases. So, thm has been discussed as an introduction showing the decrease of
“effective” value of V for a starved contact is larger than for athe entire film thickness level with decreasing lubricant supply.
fully flooded contact under the same conditions and the deformidext the results for the time dependent problem with the waviness
tion of the waviness will be larger. However, this is only part omoving through the contact were presented. It has been shown
the explanation. When & is used obtained correcting for thethat the relative deformed amplitude of the waviness depends on
shorter entrainment length of the starved contact, which can tee same non-dimensional wavelength parameter as before, but
computed from a Grubin analysis of the type given in Section Hat for a larger degree of starvation the relative deformed ampli-
the results do shift in the right direction but the correction is totude is smaller, or, a smaller lubricant supply leads to a larger
small. The correction then given in fact assumes that the starwedliuction of the waviness amplitude inside the contact. The exact
contact is characterized by a fixed inlet film thickness. However,physical mechanism causing this behavior is subject of further
should be noted that in the dynamic contact neither the film thickesearch. However, meanwhile it has been shown that to a good
ness at the inlet location nor the inlet position are fixed becauapproximation the relative deformed amplitude of the starved
the inlet moves. When a wavy pattern enters the contact the inpgbblem can be predicted by the formula for the fully flooded
location shifts towards the center when when a valley enters angbibblem if the generalized wavelength parameter is corrected us-
shifts outwards when an asperity enters. This effect gives an ang the ratio of the central film thickness for the fully flooded
ditional reduction to the film thickness oscillations that are evesteady state contact to the central film thickness for the starved
tually propagated into the contact. Using flextendedl perturba- steady state smooth contact. As for this ratio an accurate approxi-
tion approach of Hookg22] the effect of different alternative inlet mation formula is available, it appears that also for starved con-
conditions on the reduced waviness amplitude can be analyz&tts using a Fourier component wise approach a crude estimate of
This is the subject of ongoing research. However, preliminathe deformed surface micro-geometrgughneskinside a contact
results show that the effect depends on the exact condition: fixe@in be obtained quite easily now.

Fig. 8 Relative deformed amplitude A4/A; as a function of V
=(H/Hy)¥?V for transverse (top) and isotropic (bottom ) wavi-
ness. The drawn line represents the predictions of Eq. (17) with
V replaced by fabla.
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Nomenclature

Colfcdmpnd

<< X x
m o Rlan S XX s

>’{<>/><>/>’t$

n

Hertzian contact length= (3FR/2E’)Y?
dimensionless amplitude

dimensionless amplitude film thickness oscilla-

tions

amplitude function

constant

modulus of elasticity

reduced modulus of elasticity
2[E"=(1—v2)/E + (1—v3)/E,

roughness orientation function

external nominal load

dimensionless paramet&= aE’

film thickness

dimensionless film thicknedd =hR, /a?
dimensionless central film thickness
dimensionless film thickness at inlet
dimensionless central film thickness fully
flooded conditions

dimensionless oil layer thickness

integral

dimensionless time step

dimensionless mesh size ¥y Y
dimensionless material parameter G(2U)**
dimensionless load parameteér=W(2U) %4
number of gridpoints irX, Y

pressure

maximum Hertzian pressum,= (3F)/(2ma?)
dimensionless pressufRe=p/py

parameter =H; /(p(Pn)Hecr)

reduced radius of curvature,R+ 1/R,+ 1/R,
reduced radius of curvature i 1/R,=1/R;
+1/Ry,

reduced radius of curvature in R, =R,
radius of curvature surface 1,2 in

radius of curvature surface 1,2 yn

film thickness ratioH . /H s

dimensionless speed parame®er u, /U’
time

dimensionless tim& =tu/a

surface velocity

sum velocityus= (u,+U,)

average velocity= (u; +u,)/2
dimensionless speed parameter,
2U=(nous)/ (E'Ry)

surface waviness function

dimensionless load paramet®y= F/(E’Ri)
coordinate in direction of rolling
dimensionless coordinatX,=x/a, X'=x'/a
coordinate perpendicular to
dimensionless coordinat¥,=y/a, Y'=y'/a
viscosity index(Roeland$

pressure viscosity coefficient
dimensionless parametar= apy,

parameter in equation

mutual approach

dimensionless mutual approadh= 5R, /a?
coefficient in Reynolds’ equation
e=(pH%)/(7\)

exponent

poisson ratio

wavelength

wavelength inx direction

wavelength iny direction

dimensionless speed parameter

N =6(moUsR})/(a%py)

viscosity

256 / Vol. 126, APRIL 2004

V = generalized wavelengtfi=c(\/a)a®?L "2
V = corrected Generalized wavelength
V=c(H/H)?(\a)a® 2
‘7 = dimensionless viscosityy= 7/ 79
p = density
p = dimensionless densify=p/pg
3 = slip paramete® = (u;—u,)/u
6 = fractional film content
o = variable
{ = variable
Subscripts
0 = constant, e.g., at ambient pressure
1, 2 = surface 1, 2
a, b = inlet side, outlet side
s = start, atT=0
Relations Between Parameters
a = L/m(3M/2)Y3
N = (1287%/3M*)13
3 = 2(S-1)
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