171 research outputs found

    Thermal and photochemical decomposition of a styrene-oxygen copolymer

    Get PDF
    En este trabajo se estudia la ruptura térmica y fotoquímica de un poli-peróxido de estireno de peso molecular 2100. A partir de medidas de la velocidad de polimerización del estireno fotosensitizado por el poli-peróxido se puede concluir que la recombinación primaria es de 0.66. Los parámetros de Arrhenius obtenidos para la ruptura térmica son considerablemente menores que los obtenidos para la ruptura del ditert-butil peróxido

    Unexpected solvent isotope effect on the triplet lifetime of methylene blue associated to cucurbit[7]uril

    Full text link
    [EN] Methylene blue shows an isotope dependent triplet lifetime that is 50% longer in D2O compared with H2O as a result of electronic-to-vibrational relaxation. The effect is enhanced when the dye is bound to curcubit[7]uril due to a combination of restricted mobility and a unfavorable vibrational coupling.This work was supported by NSERC-Canada. M. G. B thanks the Spanish Ministry of Science and Innovation for a post-doctoral contract. E. A. Acknowledges Becas Chile and the University of Ottawa for postdoctoral fellowships. We also thank Michel Grenier for his help on the time resolved measurements.Alarcón, E.; González Béjar, M.; Montes Navajas, PM.; García Gómez, H.; Lissi, E.; Scaiano, JC. (2012). Unexpected solvent isotope effect on the triplet lifetime of methylene blue associated to cucurbit[7]uril. Photochemical & Photobiological Sciences. 11(2):269-273. doi:10.1039/c1pp05227fS269273112N. J. Turro , V.Ramamurthy and J. C.Scaiano, Modern molecular photochemistry of organic molecules, University Science Books, Sausalito, California, 2010Rekharsky, M. V., Ko, Y. H., Selvapalam, N., Kim, K., & Inoue, Y. (2007). Complexation Thermodynamics of Cucurbit[6]uril with Aliphatic Alcohols, Amines, and Diamines. Supramolecular Chemistry, 19(1-2), 39-46. doi:10.1080/10610270600915292Cohen, M. D., & Schmidt, G. M. J. (1964). 383. Topochemistry. Part I. A survey. Journal of the Chemical Society (Resumed), 1996. doi:10.1039/jr9640001996Cohen, M. D., Hirshberg, Y., & Schmidt, G. M. J. (1964). 389. Topochemistry. Part VII. The photoactivity of anils of salicylaldehydes in rigid solutions. Journal of the Chemical Society (Resumed), 2051. doi:10.1039/jr9640002051Cohen, M. D., Hirshberg, Y., & Schmidt, G. M. J. (1964). 390. Topochemistry. Part VIII. The effect of solvent, temperature, and light on the structure of anils of hydroxynaphthaldehydes. Journal of the Chemical Society (Resumed), 2060. doi:10.1039/jr9640002060Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., … Kim, K. (2000). New Cucurbituril Homologues:  Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n= 5, 7, and 8). Journal of the American Chemical Society, 122(3), 540-541. doi:10.1021/ja993376pLee, J. W., Samal, S., Selvapalam, N., Kim, H.-J., & Kim, K. (2003). Cucurbituril Homologues and Derivatives:  New Opportunities in Supramolecular Chemistry. Accounts of Chemical Research, 36(8), 621-630. doi:10.1021/ar020254kHennig, A., Ghale, G., & Nau, W. M. (2007). Effects of cucurbit[7]uril on enzymatic activity. Chemical Communications, (16), 1614. doi:10.1039/b618703jKoner, A. L., & Nau, W. M. (2007). Cucurbituril Encapsulation of Fluorescent Dyes. Supramolecular Chemistry, 19(1-2), 55-66. doi:10.1080/10610270600910749Mohanty, J., Pal, H., Ray, A. K., Kumar, S., & Nau, W. M. (2007). Supramolecular Dye Laser with Cucurbit[7]uril in Water. ChemPhysChem, 8(1), 54-56. doi:10.1002/cphc.200600625Shaikh, M., Mohanty, J., Singh, P. K., Nau, W. M., & Pal, H. (2008). Complexation of acridine orange by cucurbit[7]uril and β-cyclodextrin: photophysical effects and pKashifts. Photochem. Photobiol. Sci., 7(4), 408-414. doi:10.1039/b715815gSueishi, Y., Asano, K., Yamaoka, M., & Yamamoto, S. (2008). Characterization of Water-Soluble Cucurbit[7]uril in Alcohol-Water Mixtures by High-Pressure Studies on the Inclusion Complexation with New Methylene Blue. Zeitschrift für Physikalische Chemie, 222(1), 153-161. doi:10.1524/zpch.2008.222.1.153Zhou, Y., Yu, H., Zhang, L., Sun, J., Wu, L., Lu, Q., & Wang, L. (2008). Host properties of cucurbit [7] uril: fluorescence enhancement of acridine orange. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 61(3-4), 259-264. doi:10.1007/s10847-008-9414-8González-Béjar, M., Montes-Navajas, P., García, H., & Scaiano, J. C. (2009). Methylene Blue Encapsulation in Cucurbit[7]uril: Laser Flash Photolysis and Near-IR Luminescence Studies of the Interaction with Oxygen. Langmuir, 25(18), 10490-10494. doi:10.1021/la9011923Montes-Navajas, P., Corma, A., & Garcia, H. (2008). Complexation and Fluorescence of Tricyclic Basic Dyes Encapsulated in Cucurbiturils. ChemPhysChem, 9(5), 713-720. doi:10.1002/cphc.200700735Mohanty, J., & Nau, W. M. (2005). Ultrastable Rhodamine with Cucurbituril. Angewandte Chemie International Edition, 44(24), 3750-3754. doi:10.1002/anie.200500502Montes-Navajas, P., & Garcia, H. (2010). Cucurbituril Complexation Enhances Intersystem Crossing and Triplet Lifetime of 2,4,6-Triphenylpyrylium Ion. The Journal of Physical Chemistry C, 114(5), 2034-2038. doi:10.1021/jp9095166Van Houten, J., & Watts, R. J. (1975). Effect of ligand and solvent deuteration on the excited state properties of the tris(2,2’-bipyridyl)ruthenium(II) ion in aqueous solution. Evidence for electron transfer to solvent. Journal of the American Chemical Society, 97(13), 3843-3844. doi:10.1021/ja00846a062Schmidt, R., & Bodesheim, M. (1994). Time-Resolved Measurement of O2(1.SIGMA.+g) in Solution. Phosphorescence from an Upper Excited State. The Journal of Physical Chemistry, 98(11), 2874-2876. doi:10.1021/j100062a024Hurst, J. R., & Schuster, G. B. (1983). Nonradiative relaxation of singlet oxygen in solution. Journal of the American Chemical Society, 105(18), 5756-5760. doi:10.1021/ja00356a009Schmidt, R., & Brauer, H. D. (1987). Radiationless deactivation of singlet oxygen (1.DELTA.g) by solvent molecules. Journal of the American Chemical Society, 109(23), 6976-6981. doi:10.1021/ja00257a012Rodgers, M. A. J. (1983). TIME RESOLVED STUDIES OF 1.27 μm LUMINESCENCE FROM SINGLET OXYGEN GENERATED IN HOMOGENEOUS and MICROHETEROGENEOUS FLUIDS. Photochemistry and Photobiology, 37(1), 99-103. doi:10.1111/j.1751-1097.1983.tb04440.xRodgers, M. A. J., & Snowden, P. T. (1982). Lifetime of oxygen (O2(1.DELTA.g)) in liquid water as determined by time-resolved infrared luminescence measurements. Journal of the American Chemical Society, 104(20), 5541-5543. doi:10.1021/ja00384a070Ogilby, P. R., & Foote, C. S. (1983). Chemistry of singlet oxygen. 42. Effect of solvent, solvent isotopic substitution, and temperature on the lifetime of singlet molecular oxygen (1.DELTA.g). Journal of the American Chemical Society, 105(11), 3423-3430. doi:10.1021/ja00349a007Gardner, P. J., & Kasha, M. (1969). Electronic Consequences of Vibrational Deficiency in Polyatomic Molecules. The Journal of Chemical Physics, 50(4), 1543-1552. doi:10.1063/1.1671240Schweitzer, C., & Schmidt, R. (2003). Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. Chemical Reviews, 103(5), 1685-1758. doi:10.1021/cr010371dS. L. Murov , I.Carmichael and G. L.Hug, Handbook of photochemistry, Mercel Decker Inc, New York, 1993Beeby, A., Parker, A. W., Simpson, M. S. C., & Phillips, D. (1992). The effect of solvent deuteration on the photophysics of sulphonated aluminium phthalocyanine. Journal of Photochemistry and Photobiology B: Biology, 16(1), 73-81. doi:10.1016/1011-1344(92)85154-mNau, W. M., & Mohanty, J. (2005). Taming fluorescent dyes with cucurbituril. International Journal of Photoenergy, 7(3), 133-141. doi:10.1155/s1110662x05000206Alarcón, E., Edwards, A. M., Aspee, A., Moran, F. E., Borsarelli, C. D., Lissi, E. A., … Scaiano, J. C. (2010). Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dyelocalization. Photochem. Photobiol. Sci., 9(1), 93-102. doi:10.1039/b9pp00091gDavila, J., & Harriman, A. (1990). PHOTOREACTIONS OF MACROCYCLIC DYES BOUND TO HUMAN SERUM ALBUMIN. Photochemistry and Photobiology, 51(1), 9-19. doi:10.1111/j.1751-1097.1990.tb01678.xEngst, P., Kubát, P., & Jirsa, M. (1994). The influence of D2O on the photophysical properties of meso-tetra (4-sulphonatophenyl) porphine, Photosan III and tetrasulphonated aluminium and zinc phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 78(3), 215-219. doi:10.1016/1010-6030(93)03730-5Jensen, R. L., Arnbjerg, J., & Ogilby, P. R. (2010). Temperature Effects on the Solvent-Dependent Deactivation of Singlet Oxygen. Journal of the American Chemical Society, 132(23), 8098-8105. doi:10.1021/ja101753nLipert, R. J., & Colson, S. D. (1989). Deuterium isotope effects on S1 radiationless decay in phenol and on intermolecular vibrations in the phenol-water complex. The Journal of Physical Chemistry, 93(1), 135-139. doi:10.1021/j100338a030Tanielian, C., & Wolff, C. (1995). Determination of the Parameters Controlling Singlet Oxygen Production via Oxygen and Heavy-Atom Enhancement of Triplet Yields. The Journal of Physical Chemistry, 99(24), 9831-9837. doi:10.1021/j100024a02

    Study on cosmogenic activation above ground for the DarkSide-20k project

    Get PDF
    The activation of materials due to the exposure to cosmic rays may become an important background source for experiments investigating rare event phenomena. DarkSide-20k is a direct detection experiment for galactic dark matter particles, using a two-phase liquid argon time projection chamber filled with 49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Here, the cosmogenic activity of relevant long-lived radioisotopes induced in the argon and other massive components of the set-up has been estimated; production of 120 t of radiopure UAr is foreseen. The expected exposure above ground and production rates, either measured or calculated, have been considered. From the simulated counting rates in the detector due to cosmogenic isotopes, it is concluded that activation in copper and stainless steel is not problematic. Activation of titanium, considered in early designs but not used in the final design, is discussed. The activity of 39Ar induced during extraction, purification and transport on surface, in baseline conditions, is evaluated to be 2.8% of the activity measured in UAr from the same source, and thus considered acceptable. Other products in the UAr such as 37Ar and 3H are shown to not be relevant due to short half-life and assumed purification methods

    RELEVANCE OF SECONDARY PROCESSES IN ORAC VALUES OBTAINED EMPLOYING PYROGALLOL RED AS TARGET MOLECULE

    No full text

    URIC ACID REACTION WITH DPPH RADICALS AT THE MICELLAR INTERFACE

    No full text

    Kinetics and mechanism of the reaction of a nitroxide radical (tempol) with a phenolic antioxidant

    No full text
    In the absence of redox-active transition metal ions, the removal of Tempol by Trolox occurs by a simple bimolecular reaction that, most probably, involves a hydrogen transfer from phenol to nitroxide. The specific rate constant of the process is small (0.1 M-1 s-1). Metals can catalyze the process, as evidenced by the decrease in rate observed in the presence of diethylenetriaminepentaacetic acid (DTPA). Furthermore, addition of Fe(II) (20 μM ferrous sulfate and 40 μM EDTA) produces a noticeable increase in the rate of Tempol consumption

    Oxidation of carbon monoxide by t-butoxy-radicals

    No full text
    The study of the pyrolysis of di-t-butyl peroxide in the presence of carbon monoxide allows an evaluation of the rate constant for the oxidation of carbon monoxide by t-butoxy-radicals
    corecore