191 research outputs found

    Femtosecond light pulse propagation through metallic nanohole arrays: The role of the dielectric substrate

    Get PDF
    We study theoretically ultrafast light propagation through a periodic array of holes in a silver film deposited on a dielectric substrate using a three-dimensional finite-difference time-domain (FDTD) simulation. We focus on studying the effects of the coherent coupling between resonant surface plasmon polariton (SPP) excitations at the top and bottom interfaces of the metal film on the transmission dynamics. In a free standing film, the SPP excitations at both interfaces are fully in resonance and pronounced temporal oscillations in the energy flow between the bottom and top interfaces give evidence for coupling between the (±1,0) SPP modes via photon tunneling through the holes. Variation of the dielectric constant of the substrate lifts the energetic degeneracy between the two modes and thus decreases the coupling and suppresses the energy oscillations. New SPP-enhanced transmission peaks appear when higher order modes at the substrate/metal interface are brought into resonance with the (±1,0) air/metal resonance and efficient mode coupling is achieved. Both temporal transmission dynamics and near-field mode profiles are reported and their implications for tailoring the optical properties of these two-dimensional plasmonic crystals are discussed

    Quantum coherence controls the charge separation in a prototypical artificial light harvesting system

    Get PDF
    In artificial light harvesting systems the conversion of light into charges or chemical energy happens on the femtosecond time scale and is thought to involve the incoherent jump of an electron from the optical absorber to an electron acceptor. Here we investigate the primary process of electronic charge transfer dynamics in a carotene-porphyrin-fullerene triad, a prototypical elementary component for an artificial light harvesting system combining coherent femtosecond spectroscopy and first-principles quantum dynamics simulations. Our experimental and theoretical results provide strong evidence that the driving mechanism of the photoinduced current generation cycle is a quantum-correlated wavelike motion of electrons and nuclei on a timescale of few tens of femtoseconds. We furthermore highlight the fundamental role played by the interface between the light-absorbing chromophore and the charge acceptor in triggering the coherent wavelike electron-hole splitting. © 2013 IEEE

    Improved bone defect healing by a superagonistic GDF5 variant derived from a patient with multiple synostoses syndrome

    Get PDF
    Multiple synostoses syndrome 2 (SYNS2) is a rare genetic disease characterized by multiple fusions of the joints of the extremities, like phalangeal joints, carpal and tarsal joints or the knee and elbows. SYNS2 is caused by point mutations in the Growth and Differentiation Factor 5 (GDF5), which plays an essential role during skeletal development and regeneration. We selected one of the SYNS2-causing GDF5 mutations, p.N445T, which is known to destabilize the interaction with the Bone Morphogenetic Protein (BMP) antagonist NOGGIN (NOG), in order to generate the superagonistic GDF5 variant GDF5(N445T). In this study, we tested its capacity to support regeneration in a rat critical-sized defect model in vivo. MicroCT and histological analyses indicate that GDF5(N445T)-treated defects show faster and more efficient healing compared to GDF5 wild type (GDF5(wt))-treated defects. Microarray-based gene expression and quantitative PCR analyses from callus tissue point to a specific acceleration of the early phases of bone healing, comprising the inflammation and chondrogenesis phase. These results support the concept that disease-deduced growth factor variants are promising lead structures for novel therapeutics with improved clinical activities

    Resonant behavior of a single plasmonic helix

    Get PDF
    Chiral plasmonic nanostructures will be of increasing importance for future applications in the field of nano optics and metamaterials. Their sensitivity to incident circularly polarized light in combination with the ability of extreme electromagnetic field localization renders them ideal candidates for chiral sensing and for all-optical information processing. Here, the resonant modes of single plasmonic helices are investigated. We find that a single plasmonic helix can be efficiently excited with circularly polarized light of both equal and opposite handedness relative to that of the helix. An analytic model provides resonance conditions matching the results of full-field modeling. The underlying geometric considerations explain the mechanism of excitation and deliver quantitative design rules for plasmonic helices being resonant in a desired wavelength range. Based on the developed analytical design tool, single silver helices were fabricated and optically characterized. They show the expected strong chiroptical response to both handednesses in the targeted visible range. With a value of 0.45 the experimentally realized dissymmetry factor is the largest obtained for single plasmonic helices in the visible range up to now.Comment: main: typo in the author's name corrected, SI: update

    Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures

    Get PDF
    Sharp metallic nanotapers irradiated with few-cycle laser pulses are emerging as a source of highly confined coherent electron wavepackets with attosecond duration and strong directivity. The possibility to steer, control or switch such electron wavepackets by light is expected to pave the way towards direct visualization of nanoplasmonic field dynamics and real-time probing of electron motion in solid state nanostructures. Such pulses can be generated by strong-field induced tunneling and acceleration of electrons in the near-field of sharp gold tapers within one half-cycle of the driving laser field. Here, we show the effect of the carrier-envelope phase of the laser field on the generation and motion of strong-field emitted electrons from such tips. This is a step forward towards controlling the coherent electron motion in and around metallic nanostructures on ultrashort length and time scales

    Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences.</p> <p>Results</p> <p>Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite <it>de novo </it>transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled <it>de novo </it>from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including <it>extracellular matrix</it>, <it>cartilage development</it>, <it>contractile fiber</it>, and <it>chemokine activity</it>.</p> <p>Conclusions</p> <p>Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism.</p

    Gene identification and analysis of transcripts differentially regulated in fracture healing by EST sequencing in the domestic sheep

    Get PDF
    BACKGROUND: The sheep is an important model animal for testing novel fracture treatments and other medical applications. Despite these medical uses and the well known economic and cultural importance of the sheep, relatively little research has been performed into sheep genetics, and DNA sequences are available for only a small number of sheep genes. RESULTS: In this work we have sequenced over 47 thousand expressed sequence tags (ESTs) from libraries developed from healing bone in a sheep model of fracture healing. These ESTs were clustered with the previously available 10 thousand sheep ESTs to a total of 19087 contigs with an average length of 603 nucleotides. We used the newly identified sequences to develop RT-PCR assays for 78 sheep genes and measured differential expression during the course of fracture healing between days 7 and 42 postfracture. All genes showed significant shifts at one or more time points. 23 of the genes were differentially expressed between postfracture days 7 and 10, which could reflect an important role for these genes for the initiation of osteogenesis. CONCLUSION: The sequences we have identified in this work are a valuable resource for future studies on musculoskeletal healing and regeneration using sheep and represent an important head-start for genomic sequencing projects for Ovis aries, with partial or complete sequences being made available for over 5,800 previously unsequenced sheep genes

    Evidence, Content and Corroboration and the Tree of Life

    Get PDF
    We examine three critical aspects of Popper’s formulation of the ‘Logic of Scientific Discovery’—evidence, content and degree of corroboration—and place these concepts in the context of the Tree of Life (ToL) problem with particular reference to molecular systematics. Content, in the sense discussed by Popper, refers to the breadth and scope of existence that a hypothesis purports to explain. Content, in conjunction with the amount of available and relevant evidence, determines the testability, or potential degree of corroboration, of a statement; content distinguishes scientific hypotheses from metaphysical assertions. Degree of corroboration refers to the relative and tentative confidence assigned to one hypothesis over another, based upon the performance of each under critical tests. Here we suggest that systematists attempt to maximize content and evidence to increase the potential degree of corroboration in all phylogenetic endeavors. Discussion of this “total evidence” approach leads to several interesting conclusions about generating ToL hypotheses

    Preclinical Assessment of Bacteriophage Therapy against Experimental Acinetobacter baumannii Lung Infection

    Get PDF
    Respiratory infections caused by multidrug-resistant Acinetobacter baumannii are difficult to treat and associated with high mortality among critically ill hospitalized patients. Bacteriophages (phages) eliminate pathogens with high host specificity and efficacy. However, the lack of appropriate preclinical experimental models hampers the progress of clinical development of phages as therapeutic agents. Therefore, we tested the efficacy of a purified lytic phage, vB_AbaM_Acibel004, against multidrug-resistant A. baumannii clinical isolate RUH 2037 infection in immunocompetent mice and a human lung tissue model. Sham- and A. baumannii-infected mice received a single-dose of phage or buffer via intratracheal aerosolization. Group-specific differences in bacterial burden, immune and clinical responses were compared. Phage-treated mice not only recovered faster from infection-associated hypothermia but also had lower pulmonary bacterial burden, lower lung permeability, and cytokine release. Histopathological examination revealed less inflammation with unaffected inflammatory cellular recruitment. No phage-specific adverse events were noted. Additionally, the bactericidal effect of the purified phage on A. baumannii was confirmed after single-dose treatment in an ex vivo human lung infection model. Taken together, our data suggest that the investigated phage has significant potential to treat multidrug-resistant A. baumannii infections and further support the development of appropriate methods for preclinical evaluation of antibacterial efficacy of phages
    corecore