EGG-M--89077 DE89 016197 GEOTHERMAL DIRECT USE ENGINEERING AND DESIGN GUIDEBOOK AVAILABLE FOR AN EXPANDING MARKET Received by OSTI Ben C. Lunis and Paul J. Lienau² AUG 2 1 1989 ¹Idaho National Engineering Laboratory EG&G Idaho, Inc. Idaho Falls, Idaho 83415 regon Institute of Technology Geo-Heat ²Oregon Institute of Technology Geo-Heat Center Klamath Falls Oregon ABSTRACT DIRECT USE INSTALLATIONS The Geothermal direct use industry potential, growth trends, needs, and how they are being met, are addressed. The high potential for industry growth, coupled with a rapidly expanding use of geothermal energy for direct use, and concerns over the greenhouse effect is the setting in which a new engineering and design guidebook is issued to support the growth of the direct use industry. Recent geothermal investigations about the current status of the industry and the identification of technical needs of current operating district heating systems provide the basis upon which this paper and the guidebook is presented. The guidebook, under the auspices of the U.S. prepared Energy, attempts to impart a Department of comprehensive understanding of information important to the development of geothermal direct use projects. The text is aimed toward the engineer or technical person responsible for project design and development. The practical and technical nature of the guidebook answers questions most commonly asked in a wide range of topics including geology, exploration, well reservoir engineering, drilling, mechanical cost analysis, regulations, and engineering, environmental aspects. INTRODUCTION use of low- and moderate- temperature. (10 to resources for direct use geothermal applications has increased significantly since the late 1970's. As a result of this growth, and need to document available recognizing the for information state-of-the-art geothermal direct use project development, a guidebook was prepared and published in March, 1989 (Lienau, The Oregon Institute of Technology (OIT) 1989). and the Idaho National Engineering Laboratory (INEL), both involved in direct use research and development since the mid 1970's, initiated the creation of the Geothermal Direct Use Engineering Design Guidebook (Guidebook). The U.S. Department of Energy provided funding, guidance and the technical support of the INEL to OIT to prepare and publish the Guidebook under grant number DE-FG07-87ID 12693. The INEL work was the auspices of the U.S. performed under DOE Contract Department of Energy, DE-AC07-76ID01570. Direct heat use of geothermal energy in the United States is recognized as one of the energy resources that has proven alternative and economically, and is technically itself commercially available. Developments include conditioning of buildings, district space groundwater heat pumps, greenhouse heating, industrial processing, aquaculture, and swimming pool heating. Forty-four states have experienced significant geothermal direct use development in the last ten years. The total installed capacity is 5.8 billion Btu/h (1,700 MW_{t}), with an annual energy use of nearly 18,000 billion Btu/y (4.5 million barrels of oil energy equivalent). These data are based on an extensive site data gathering effort by the Geo-Heat Center in the spring of 1988, under contract to the U.S. Department of Energy (Lienau, 1988). Based on the 1988 study, Table 1 shows best estimates of the years that different types of geothermal direct use projects went on line for the 1940 to 1985 period, their estimated annual energy use, and the anticipated 1990 quantities. These energy use values are graphically displayed in Figure 1, showing the significant increase in the use of geothermal energy for direct use, especially after 1970. Historically, direct uses of geothermal energy in the United States were by small resorts and limited space and district heating systems. The oil price shocks of the heating systems. 1970's revived interest in the use of geothermal resources as an alternative energy source. Beginning in 1977, the United States Department of Energy initiated numerous programs that caused growth in this industry. These significant involved assistance programs technical developers, the preparation of feasibility studies for potential users, cost sharing of demonstration projects (space and district heating, industrial, agricultural, and aquaculture), resource assessments, guarantees, support of state resource assessment commercialization activities, and others. Also adding to the growth were various federal and state tax credit programs (Lunis, 1988). ### **DISCLAIMER** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Table 1. GEOTHERMAL DIRECT USE PROJECTS ENERGY ON-LINE IN 109 BTU/Y AND APPROXIMATE NUMBER OF PROJECTS (each) | Year | Resorts
& Pools | Space
Heating | Dist.
Heating | Green
Houses | Aqua-
culture | Indust.
Proc. | Heat
Pumps | Total
Energy | |------|--------------------|------------------|------------------|-----------------|------------------|------------------|---------------|-----------------| | 1940 | 1019(80) | 15(100) | 30(1) | -0- | -0- | -0- | -0- | 1064 | | 1950 | 1083(85) | 22(150) | 30(1) | -0- | -0- | -0- | ? | 1135 | | 1960 | 1146(90) | 38(250) | 68(2) | 39(3) | -0- | -0- | ? | 1297 | | 1970 | 1400(110) | 53(350) | 68(2) | 85(7) | 202(1) | 408(1) | 109(2000) | 2352 | | 1975 | 1426(112) | 508(600) | 68(2) | 187(16) | 376(3) | 1142(2) | 272(3000) | 3979 | | 1980 | 1452(114) | 592(700) | 183(6) | 324(28) | 673(8) | 3104(6) | 545(10000) | 6873 | | 1985 | 1452(114) | 677(800) | 609(20) | 381(33) | 808(15) | 8322(14) | 1641(30000) | 13890 | | 1990 | 1452(114) | 744(829) | 700(23) | 852(35) | 970(18) | 8625(16) | 4357(80000) | 17700 | FIGURE 1 Geothermal direct use energy on-line from 1940 to 1990 Table 2 gives the distribution of use according to application, which includes the largest single application, the secondary oil recovery operations in Montana, North Dakota, South Dakota and Wyoming. Figure 2 shows the projects on line, separating heat pump installations from the other direct use applications. Most people think of geothermal energy as a western states resource; however, there are significant numbers of projects developing this resource for space conditioning and district heating where low temperature (7 to 20°C) ground water aquifers exist in the central and eastern states. Ground water and earth coupled (vertical configuration) heat pump systems depend upon the average ground water temperature. The temperature of the ground and aquifers below varying depths are controlled by the geothermal gradient and thus are considered geothermal. The recent phenomena of heat pump installations expects a growth rate of about 50 Table 2 UNITED STATES GEOTHERMAL USE BY APPLICATION IN 1988 | Application | Quantity
(Each) | Capacity
(10 ⁹ Btu/h | Annual Energy
(10 ⁹ Btu/yr) | |------------------|--------------------|------------------------------------|---| | Industrial | 16 | 1,246 | 8,625 | | Heat pumps | 66,135 | 3,202 | 3,602 | | Resorts/pools | 114 | 234 | 1,452 | | Aquaculture | 180 | 180 | 970 | | Greenhouses | 35 | 297 | 852 | | Space heating | 829 | 231 | 744 | | District heating | 23 | 283 | 700 | | • | 67,170 | 5,673 | 16,945 | percent per year through 1990, according to the heat pump industry. Approximately 66,100 groundwater heat pump installations are presently installed. Geothermal direct use projects on-line between 1940 and 1990 ## DIRECT USE POTENTIAL Studies by the U.S. Geological Survey state that the resource base for geothermal energy is very large (Muffler, 1978 and Reed, 1982). There are 1,324 identified hydrothermal and conduction dominated geothermal systems. The estimated wellhead energy for low-to-moderate-temperature (<90 to 150°C) resources, assuming a recovery factor of 0.25, is 249.5 quadrillion Btu (quads). (The total annual energy consumption of the United States is ~80 quads.) The estimates include resource temperatures <10°C above the mean annual air temperature at the surface and, therefore exclude an enormous amount of shallow groundwater in the United States. Industry recognizes that such shallow waters may be useful as a source of energy for heat pumps. ## GLOBAL WARMING MITIGATION Numerous bills have been and are being introduced into the congress because of concerns over global warming due to the use of chlorofluorocarbons and the generation of carbon dioxide and other gases. Emphasized within these bills are conservation and the use of renewable energies. Geothermal energy, because of its environmentally benign nature, is an ideal source whose use will help mitigate the causes of potential global warming. As knowledge and concern increases about the effects of global warming, the need, and desire, to use geothermal energy for direct uses (and power production) is expected to increase significantly. ### **GUIDEBOOK CONTENTS** It is in this setting of increasing use of geothermal energy for direct applications, a significant identified resource base, and concerns about global warming, that a Geothermal Direct Use Engineering and Design Guidebook is issued. Direct Utilization of Geothermal Energy: A Technical Handbook (Anderson, 1979) was published several years ago to help meet the industry's needs. Since that time, a great deal of information has been gained from the development and operation of many projects. That experience is incorporated in the Guidebook to provide current, state-of-the-art technical and institutional information. Lessons learned from various heating, agribusiness, aquaculture and industrial projects, including those developed as a result of the U.S. Department of Energy's Program Opportunity Notices, provide the background for the Guidebook. The Guidebook contains 20 chapters prepared by numerous contributors with extensive experience in the use of geothermal energy for direct use applications. Table 3 lists the chapters and their respective authors. Considerable support efforts were also needed, and the various contributors are identified in Table 4. Table 3 GUIDEBOOK CHAPTERS AND AUTHORS | <u>Chap</u> | ter <u>Title</u> | <u>Author</u> | | | |---------------|--|---|--|--| | 1 | INTRODUCTION | P. J. Lienau, OIT ¹ | | | | 2 | DEMONSTRATION PROJECTS LESSONS LEARNED | B. C. Lunis, INEL ² | | | | 3 | NATURE OF GEOTHERMAL RESOURCES | Dr. P. M. Wright, UURI ³ | | | | 4 | EXPLORATION FOR DIRECT HEAT RESOURCES | Dr. P. M. Wright, UURI ¹ | | | | 5 | GEOTHERMAL FLUID SAMPLING TECHNIQUES | C. Kindle, BPNL ⁴ | | | | 6 | DRILLING AND WELL CONSTRUCTION | G. Culver, OIT | | | | 7 | WELL TESTING AND RESERVOIR EVALUATION | S. Stiger/J. Renner, INEL,
and G. Culver, OIT | | | | 8 | MATERIALS SELECTION GUIDELINES | P. F. Ellis, Radian ⁵ | | | | 9 | WELL PUMPS | G. Culver/K. Rafferty, P.E., C | | | | 10 | PIPING GEOTHERMAL FLUIDS | K. Rafferty, OIT | | | | 11 | HEAT EXCHANGERS | K. Rafferty, OIT | | | | 12 | SPACE HEATING EQUIPMENT | K. Rafferty, OIT | | | | 13 | HEAT PUMPS | K. Rafferty, OIT | | | | 14 | ABSORPTION REFRIGERATION | K. Rafferty, OIT | | | | 15 | GREENHOUSES | K. Rafferty, OIT | | | | 16 | AQUACULTURE | K. Rafferty, OIT | | | | 17 | INDUSTRIAL APPLICATIONS | P. J. Lienau, OIT | | | | 18 | ENGINEERING COST ANALYSIS | C. Higbee, OIT | | | | 19 | REGULATORY AND COMMERCIAL ASPECTS | Dr. R. G. Bloomquist, WSEO ⁶ | | | | 20 | ENVIRONMENTAL CONSIDERATIONS | B. C. Lunis, INEL | | | | 2. II
3. U | IT - Oregon Institute of Technology, G
Klamath Falls, OR 97601
NEL - Idaho National Engineering Labora
URI - University of Utah Research Insti
Salt Lake City, UT 84108
PNL - Batelle Pacific Northwest Laborat | atory, Idaho Falls, ID 83415
tute, Earth Science Laboratory, | | | ^{4.} BPNL - Batelle Pacific Northwest Laboratories, Richland, WA 99352 5. Radian - Radian Corporation, Austin, TX 78720 6. WSEO - Washington State Energy Office, Olympia, WA 98502 # Table 4 GUIDEBOOK CONTRIBUTORS | <u>ACTIVITY</u> | <u>CONTRIBUTORS</u> | |------------------------|--| | Program Guidance | L. Pratsch, DOE-HQ ¹ , and | | | K. Taylor, DOE-ID2 | | Editors | n 1 lianau OTT3 and | | Editors | P. J. Lieńau, OIT ³ , and
B. C. Lunis, INEL ⁴ | | | B. C. Lunis, INEL | | Technical Editing | R. Tetley/G. Johnson, INEL | | Peer Review | | | Chapter 6 | J. Barrow, Water Department Corp, Woodland, CA 95695 | | | D. Bamar, Balshizer/Hubbard & Assoc., Eugene, OR 97402 | | Chapter 6 | | | Chapter 20 | R. Breckenridge, INEL | | Chapter 13 | G. Bringle, VBB Allen, Salem, OR 97303 | | Chapter 9 | B. Cherry, Layne Bowler Vertiline Pumps, | | • | Memphis TN 38108 | | Chapter 15 | G. Cooper, Mendocino College, Lakeport, CA 95453 | | | 1 Funnaff Hallihumban Camuiana Dia Victo CA 04571 | | Chapter 6 | J. Evanoff, Halliburton Services, Rio Vista, CA 94571 | | Chapter 10,11,12 | K. Fisher, San Bernardino, CA 92402 | | Chapter 9 | J. Frost, Johnston Pump Co., Azuza, CA 91702 | | Chapter 5.6 | M. Gannet, Oregon Water Resources Dept., | | | Salem, OR 97310 | | Chapton 10 | | | Chapter 18 | J. Hawley, OIT | | Chapter 6,18 | J. Huttrer, Geothermal Management Co., | | | Evergreen CO 80439 | | Chapter 6 | P. Jannsen, Jannsen Well Drilling, Aloha, OR 97006 | | Chapter 11,12,13,14 | E. Knipe, Brown and Caldwell, Pasadena, CA 91105 | | Chapter 15 | W. Li, Agriculture Research Academy, Tianjin, China | | | | | Chapter 16 | J. Lund, OIT | | Chapter 9 | C. McGuire, Centrilift-Hughes, | | | Huntington Beach CA 92649 | | Chapter 6 | G. Polk, N. L. Baroid, Sandia Park, NM 87407 | | Chapter 9 | M. Smith, California Energy Commission, | | chapter 3 | Comments CA OCOLA | | | Sacramento, CA 95814 | | Chapter 6 | R. Thomas, California Division of Oil and Gas, | | | Sacramento, CA 95814 | | Chapter 15 | W. Wang, Geothermal Research and Training Center, | | | Tianjin, China | | | rianjin, china | | | | | Computer coordination/ | | | ranslation | J. Howley, OIT | | * . | | | Clerical support | C. Nellipowitz and K. Moore, OIT | | CAD operators | R. Zemeke/D. Kellum, OIT | | | | | Printing | Oregon State University Department of Printing, | | | Corvallis, OR 97331 | DOE-HQ - U.S. Department of Energy, Geothermal Technology Division, Washington, D.C. 20585 DOE-ID - U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID 83402 OIT - Oregon Institute of Technology Geo-Heat Center, Klamath Falls, OR 976014 INEL - Idaho National Engineering Laboratory, Idaho Falls, ID 83415 Lunis et al. The Guidebook addresses all aspects of a geothermal direct use project from initial planning to final operation. Because each project is unique, it should be approached in phases to minimize risk and costs. The first phase, which generally involves securing rights to the resource, is presented in Chapter 19. This chapter provides an overview of the various regulatory and commercial aspects that affect the development of geothermal direct use projects. Information is provided on pertinent geothermal definitions, ownership, leasing, agencies involved, injection requirements, etc. for the federal government and 13 western states. The second phase of development could involve the interdisciplinary geology, activities of geochemistry, geophysics, drilling, and reservoir engineering. In Chapter 3, the nature of geothermal resources is discussed including; geological processes, resource classifications, description of low- to moderate- temperature geothermal resources and the potential for geothermal development. Chapter 4 discusses exploration strategies where the main objective is to site wells that intersect the resource. Geothermal fluid sampling techniques, Chapter 5, suggests sample treatment (stabilization) and analysis techniques appropriate for field minimizing errors that may result from changes in water samples between time of collection and time of analysis. Chapter 6 provides information on the basics of equipment and methods used for drilling and completion of geothermal wells. It provides data needed by engineers and consultants to assist them in specification writing, of contractors, drilling, and selection completion inspection. The purpose of Chapter 7, Well Testing and Reservoir Evaluation, is to acquaint the direct use project engineer or developer with interpretation of the analytical information provided by a hydrologist on well testing, reservoir assessment, and reservoir management. It provides guidance in a practical sense for setting up testing and monitoring programs, what to specify and how to evaluate the resource with regard to system design and project life. The preliminary design of a direct use project could take place concurrently with reservoir testing and evaluation. Special consideration should be given to design of equipment such as well pumps (Chapter 9), piping (Chapter 10), heat exchangers (Chapter 11), and space heating equipment (Chapter 12). Direct use systems requires careful corrosion engineering if the most cost effective material selections are to be made. Chapter 8 provides guidelines on material selection for low-temperature geothermal systems (50 to 105° C), as well as guidance in materials design of heat pump systems for very low-temperature geothermal resources (> 50° C). The Guidebook should prove useful for understanding important factors in the conceptual and final design of space heating and cooling systems (Chapters 12 and 14), commercial heat pump systems (Chapter 13), greenhouse heating systems (Chapter 15), aquaculture (Chapter 16), and selected industrial applications (Chapter 17). Engineering cost analysis, Chapter 18, is designed to provide an understanding of the skills necessary to complete a life cycle cost analysis of a proposed project. Regulatory statutes, commercial and environment aspects, Chapter 19 and 20, are important considerations in any direct use project. Since these aspects are unique in each state, statutes and state agencies are identified for the developers convenience. ### TECHNOLOGY NEEDS As the geothermal direct use industry experienced growth over the past decade, a number of areas have been identified where applied research and development could improve the efficiency, performance, and operation of these systems. Identified areas include: the performance of materials and equipment in geothermal fluids, economical piping systems to replace epoxy lined asbestos cement pipe, open cycle heat pumps, more efficient utilization of fluids for greenhouses and aquaculture projects, marketing techniques for district heating systems, and in general, a better understanding of low-temperature geothermal systems and their definitive locations near population centers. Based on the evaluation of the performance of 13 geothermal district heating systems, the Geo-Heat Center has identified problems which could hinder geothermal direct use development. These include the cause of repeated downwell production pump failures, evaluation of apparent hardening of elastomer seat seals from resilient butterfly valves, and evaluation of the thermal and geofluid compatibility limitations of commercially available piping systems being considered as the most cost effective alternative to asbestos cement (AC). AC pipe, which has been the most popular type of piping for geothermal district heating systems, is either being eliminated or severely curtailed by many manufacturers. Effective marketing techniques need to be identified to encourage customers to participate in geothermal district heating projects. Open cycle heat pumps are capable of producing steam, utilizing waste effluent water at temperatures typical of geothermal district heating effluents. These heat pumps could provide steam to industrial process areas or buildings with steam heating systems, thus greatly increasing the load factor of the district heating systems. Engineering and economic feasibility of utilizing open cycle heat pumps needs to be investigated. Aquaculture of fresh water species and geothermal heated green houses are two of the fastest growing direct uses as shown by the rapid increase in the number of projects on-line and currently under investigation. There is a need to determine which system designs have proven successful and most efficient in the utilization of fluids in different settings, and why. There is also a need to investigate the possibility of cascading from geothermal power plants effluents that could be used for greenhouses, aquaculture and industrial processes. This information could be made available to potential users. Most geothermal direct use projects have been able to surface discharge spent geothermal fluids in the past. However, especially in areas where multiple users draw fluids from a common reservoir, the drawdown of geothermal fluids may necessitate varying degrees of reservoir analysis and the use of injection wells to maintain aquifer stability. There is a need to provide guidance to developers on reservoir engineering programs that can identify the placement of injection wells and the design of monitoring networks to determine their definitive locations with respect to population centers. These are areas where the State Cooperative Reservoir Assessment Program and the U.S. Geological Survey could make a significant contribution. #### CONCLUSIONS The United States direct use industry is and will continue to experience a significant growth rate with a qualified infrastructure of developers and users. The purpose of the Guidebook is to provide an integrated information source to assist in the successful development of direct use projects that in turn will contribute to the mitigation of global warming. Resolution of the concerns identified will result in greater system reliability, reduced maintenance costs, and greater user confidence. Most direct utilization systems are designed and installed by private enterprises or municipalities, which lack the monetary and scientific resources to solve geothermal engineering problems. The opportunity exists for government and industry to enhance and increase the use of an energy form that will provide the benefits available from geothermal systems. ### REFERENCES Anderson, D.N., and Lund, J.W., (editors), "Direct Utilization of Geothermal Energy: A Technical Handbook", Geothermal Resources Council Special Report No. 7, Davis, CA, 1979. Lienau, P.J., Culver, G., and Lund, J.W., "Geothermal Direct Use Developments in the United States", Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR, July, 1988. Lienau, P.J., and Lunis, B.C., (editors), "Geothermal Direct Use Engineering and Design Guidebook", Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR, January, 1989. Lunis, B.C., and Lienau, P.J., "Geothermal Direct Use Projects in the United States - Status and Trends", <u>Jigastock</u> 88, <u>Versailles</u>, <u>France</u>, October 17, 1988. Muffler, L.J.P., (editor), "Assessment of Geothermal Resources of the United States -1978", U.S. Geological Survey Circular 790, Reston, VA, 1979. Reed, M. (editor), Assessment of Low Temperature Geothermal resources of the United States-1982", U.S. Geological Survey Circular 892, Reston, VA, 1982.