14,368 research outputs found

    A radiometric method for measuring the insertion loss of radome materials

    Get PDF
    Radiometer system measures effective noise temperature directed towards sky, with and without radome over antenna horn. Data is then translated into computer format. With additional transmission line insertion loss data from other measurements, computer calculates insertion loss of radome material

    Exact Lagrangian submanifolds in simply-connected cotangent bundles

    Full text link
    We consider exact Lagrangian submanifolds in cotangent bundles. Under certain additional restrictions (triviality of the fundamental group of the cotangent bundle, and of the Maslov class and second Stiefel-Whitney class of the Lagrangian submanifold) we prove such submanifolds are Floer-cohomologically indistinguishable from the zero-section. This implies strong restrictions on their topology. An essentially equivalent result was recently proved independently by Nadler, using a different approach.Comment: 28 pages, 3 figures. Version 2 -- derivation and discussion of the spectral sequence considerably expanded. Other minor change

    Computer analysis of N. crassa growth curves.

    Get PDF
    Computer analysis of N. crassa growth curves

    New Formalism for Numerical Relativity

    Full text link
    We present a new formulation of the Einstein equations that casts them in an explicitly first order, flux-conservative, hyperbolic form. We show that this now can be done for a wide class of time slicing conditions, including maximal slicing, making it potentially very useful for numerical relativity. This development permits the application to the Einstein equations of advanced numerical methods developed to solve the fluid dynamic equations, {\em without} overly restricting the time slicing, for the first time. The full set of characteristic fields and speeds is explicitly given.Comment: uucompresed PS file. 4 pages including 1 figure. Revised version adds a figure showing a comparison between the standard ADM approach and the new formulation. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Appeared in Physical Review Letters 75, 600 (1995

    Stabilizing Superconductivity in Nanowires by Coupling to Dissipative Environments

    Full text link
    We present a theory for a finite-length superconducting nanowire coupled to an environment. We show that in the absence of dissipation quantum phase slips always destroy superconductivity, even at zero temperature. Dissipation stabilizes the superconducting phase. We apply this theory to explain the "anti-proximity effect" recently seen by Tian et. al. in Zinc nanowires.Comment: 4 pages, 3 figure

    Giant phonon anomalies in the pseudo-gap phase of TiOCl

    Full text link
    We report infrared and Raman spectroscopy results of the spin-1/2 quantum magnet TiOCl. Giant anomalies are found in the temperature dependence of the phonon spectrum, which hint to unusual coupling of the electronic degrees of freedom to the lattice. These anomalies develop over a broad temperature interval, suggesting the presence of an extended fluctuation regime. This defines a pseudo-gap phase, characterized by a local spin-gap. Below 100 K a dimensionality cross-over leads to a dimerized ground state with a global spin-gap of about 2Δspin\Delta_{spin}\approx~430 K.Comment: 4 pages, 3 figures, for further information see http://www.peter-lemmens.d

    The Evolution of Distorted Rotating Black Holes II: Dynamics and Analysis

    Full text link
    We have developed a numerical code to study the evolution of distorted, rotating black holes. This code is used to evolve a new family of black hole initial data sets corresponding to distorted ``Kerr'' holes with a wide range of rotation parameters, and distorted Schwarzschild black holes with odd-parity radiation. Rotating black holes with rotation parameters as high as a/m=0.87a/m=0.87 are evolved and analyzed in this paper. The evolutions are generally carried out to about t=100Mt=100M, where MM is the ADM mass. We have extracted both the even- and odd-parity gravitational waveforms, and find the quasinormal modes of the holes to be excited in all cases. We also track the apparent horizons of the black holes, and find them to be a useful tool for interpreting the numerical results. We are able to compute the masses of the black holes from the measurements of their apparent horizons, as well as the total energy radiated and find their sum to be in excellent agreement with the ADM mass.Comment: 26 pages, LaTeX with RevTeX 3.0 macros. 27 uuencoded gz-compressed postscript figures. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Submitted to Physical Review

    Event Horizons in Numerical Relativity I: Methods and Tests

    Full text link
    This is the first paper in a series on event horizons in numerical relativity. In this paper we present methods for obtaining the location of an event horizon in a numerically generated spacetime. The location of an event horizon is determined based on two key ideas: (1) integrating backward in time, and (2) integrating the whole horizon surface. The accuracy and efficiency of the methods are examined with various sample spacetimes, including both analytic (Schwarzschild and Kerr) and numerically generated black holes. The numerically evolved spacetimes contain highly distorted black holes, rotating black holes, and colliding black holes. In all cases studied, our methods can find event horizons to within a very small fraction of a grid zone.Comment: 22 pages, LaTeX with RevTeX 3.0 macros, 20 uuencoded gz-compressed postscript figures. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Submitted to Physical Review

    A Textured Silicon Calorimetric Light Detector

    Full text link
    We apply the standard photovoltaic technique of texturing to reduce the reflectivity of silicon cryogenic calorimetric light detectors. In the case of photons with random incidence angles, absorption is compatible with the increase in surface area. For the geometrically thin detectors studied, energy resolution from athermal phonons, dominated by position dependence, is proportional to the surface-to-volume ratio. With the CaWO4 scintillating crystal used as light source, the time constants of the calorimeter should be adapted to the relatively slow light-emission times.Comment: Submitted to Journal of Applied Physic
    corecore