8,542 research outputs found

    Simulation and Detection of Photonic Chern Insulators in One-Dimensional Circuit Quantum Electrodynamics Lattice

    Full text link
    We introduce a simple method to realize and detect photonic topological Chern insulators with one-dimensional circiut quantum electrodynamics arrays. By periodically modulating the couplings of the array, we show that this one-dimensional model can be mapped into a two-dimensional Chern insulator model. In addition to allowing the study of photonic Chern insulators, this approach also provides a natural platform to realise experimentally Laughlin's pumping argument. Based on scattering theory of topological insulators and input-output formalism, we show that the photonic edge state can be probed directly and the topological invariant can be detected from the winding number of the reflection coefficient phase.Comment: 5 pages, 3 figure

    Linear Dynamic Sparse Modelling for functional MR imaging

    No full text
    The reconstruction quality of a functional MRI sequence is determined by reconstruction algorithms as well as the information obtained from measurements. In this paper, we propose a Linear Dynamic Sparse Modelling method which is composed of measurement design and reconstruction processes to improve the image quality from both aspects. This method models an fMRI sequence as a linear dynamic sparse model which is based on a key assumption that variations of functional MR images are sparse over time in the wavelet domain. The Hierarchical Bayesian Kalman filter which follows the model is employed to implement the reconstruction process. To accomplish the measurement design process, we propose an Informative Measurement Design (IMD) method. The IMD method addresses the measurement design problem of selecting k feasible measurements such that the mutual information between the unknown image and measurements is maximised, where k is a given budget and the mutual information is extracted from the linear dynamic sparse model. The experimental results demonstrated that our proposed method succeeded in boosting the quality of functional MR images

    A miniature HIFU excitation scheme to eliminate switching-induced grating lobes and nullify hard tissue attenuation

    Get PDF
    Phased array transducers are increasingly prevalent in a therapeutic contex as they facilitate precise control of the beam intensity and focus. To produce enough acoustic energy for ablation, large and costly amplifiers are required. Miniaturised switched circuits provide an alternative that is both more cost effective and more efficient. However, the high Q factor and curved geometry of a therapeutic transducer lends itself to grating lobes that deposit energy in undesirable areas when driven with switched circuitry. In this work, harmonic reduction pulse with modulation (HRPWM) is applied to a simulation of a therapeutic array. An array was simulated along with a skull that varied in attenuation. A number of switching schemes were tested and where possible, their amplitude was adjusted to reduce pressure variation in the acoustic field after propagation through the skull. Of the switched schemes tested, HRPWM performed best; reducing harmonically induced grating lobes by 12 dB and limiting pressure field variance to 0.1 dB which increases intensity at the focal point and makes therapy more efficient

    Cross-Correlation Detection of Point Sources in WMAP First Year Data

    Get PDF
    We apply a Cross-correlation (CC) method developed previously for detecting gamma-ray point sources to the WMAP first year data by using the Point-Spread Function of WMAP and obtain a full sky CC coefficient map. Analyzing this map, we find that the CC method is a powerful tool to examine the WMAP foreground residuals which can be further cleaned accordingly. Evident foreground signals are found in WMAP foreground cleaned maps and Tegmark cleaned map. In this process 101 point-sources are detected, and 26 of them are new sources besides the originally listed WMAP 208 sources. We estimate the flux of these new sources and verify them by another method. As a result, a revised mask file based on the WMAP first year data is produced by including these new sources.Comment: 14 pages, 10 figures; accepted for publication by ChJA

    Interplay of Spin-Orbit Interactions, Dimensionality, and Octahedral Rotations in Semimetallic SrIrO3_3

    Full text link
    We employ reactive molecular-beam epitaxy to synthesize the metastable perovskite SrIrO3_{3} and utilize {\it in situ} angle-resolved photoemission to reveal its electronic structure as an exotic narrow-band semimetal. We discover remarkably narrow bands which originate from a confluence of strong spin-orbit interactions, dimensionality, and both in- and out-of-plane IrO6_6 octahedral rotations. The partial occupation of numerous bands with strongly mixed orbital characters signals the breakdown of the single-band Mott picture that characterizes its insulating two-dimensional counterpart, Sr2_{2}IrO4_{4}, illustrating the power of structure-property relations for manipulating the subtle balance between spin-orbit interactions and electron-electron interactions

    Liouville integrability of a class of integrable spin Calogero-Moser systems and exponents of simple Lie algebras

    Full text link
    In previous work, we introduced a class of integrable spin Calogero-Moser systems associated with the classical dynamical r-matrices with spectral parameter, as classified by Etingof and Varchenko for simple Lie algebras. Here the main purpose is to establish the Liouville integrability of these systems by a uniform method
    corecore