21,181 research outputs found

    Asymptotic iteration method for eigenvalue problems

    Full text link
    An asymptotic interation method for solving second-order homogeneous linear differential equations of the form y'' = lambda(x) y' + s(x) y is introduced, where lambda(x) \neq 0 and s(x) are C-infinity functions. Applications to Schroedinger type problems, including some with highly singular potentials, are presented.Comment: 14 page

    Millimeter polarisation of the protoplanetary nebula OH 231.8+4.2: A follow-up study with CARMA

    Full text link
    In order to investigate the characteristics and influence of the magnetic field in evolved stars, we performed a follow-up investigation of our previous submillimeter analysis of the proto-planetary nebula (PPN) OH 231.8+4.2 (Sabin et al. 2014), this time at 1.3mm with the CARMA facility in polarisation mode for the purpose of a multi-scale analysis. OH 231.8+4.2 was observed at ~2.5" resolution and we detected polarised emission above the 3-sigma threshold (with a mean polarisation fraction of 3.5 %). The polarisation map indicates an overall organised magnetic field within the nebula. The main finding in this paper is the presence of a structure mostly compatible with an ordered toroidal component that is aligned with the PPN's dark lane. We also present some alternative magnetic field configuration to explain the structure observed. These data complete our previous SMA submillimeter data for a better investigation and understanding of the magnetic field structure in OH 231.8+4.2.Comment: 7 pages, 5 figures, 2 tables. Accepted for publication in MNRA

    Simulations of galaxy formation in a Λ cold dark matter universe : I : dynamical and photometric properties of a simulated disk galaxy.

    Get PDF
    We present a detailed analysis of the dynamical and photometric properties of a disk galaxy simulated in the cold dark matter (CDM) cosmogony. The galaxy is assembled through a number of high-redshift mergers followed by a period of quiescent accretion after z1 that lead to the formation of two distinct dynamical components: a spheroid of mostly old stars and a rotationally supported disk of younger stars. The surface brightness profile is very well approximated by the superposition of an R1/4 spheroid and an exponential disk. Each photometric component contributes a similar fraction of the total luminosity of the system, although less than a quarter of the stars form after the last merger episode at z1. In the optical bands the surface brightness profile is remarkably similar to that of Sab galaxy UGC 615, but the simulated galaxy rotates significantly faster and has a declining rotation curve dominated by the spheroid near the center. The decline in circular velocity is at odds with observation and results from the high concentration of the dark matter and baryonic components, as well as from the relatively high mass-to-light ratio of the stars in the simulation. The simulated galaxy lies 1 mag off the I-band Tully-Fisher relation of late-type spirals but seems to be in reasonable agreement with Tully-Fisher data on S0 galaxies. In agreement with previous simulation work, the angular momentum of the luminous component is an order of magnitude lower than that of late-type spirals of similar rotation speed. This again reflects the dominance of the slowly rotating, dense spheroidal component, to which most discrepancies with observation may be traced. On its own, the disk component has properties rather similar to those of late-type spirals: its luminosity, its exponential scale length, and its colors are all comparable to those of galaxy disks of similar rotation speed. This suggests that a different form of feedback than adopted here is required to inhibit the efficient collapse and cooling of gas at high redshift that leads to the formation of the spheroid. Reconciling, without fine-tuning, the properties of disk galaxies with the early collapse and high merging rates characteristic of hierarchical scenarios such as CDM remains a challenging, yet so far elusive, proposition

    Dark Energy, scalar-curvature couplings and a critical acceleration scale

    Full text link
    We study the effects of coupling a cosmologically rolling scalar field to higher order curvature terms. We show that when the strong coupling scale of the theory is on the 10^{-3}-10^{-1}eV range, the model passes all experimental bounds on the existence of fifth forces even if the field has a mass of the order of the Hubble scale in vacuum and non-suppressed couplings to SM fields. The reason is that the coupling to certain curvature invariant acts as an effective mass that grows in regions of large curvature. This prevents the field from rolling down its potential near sources and makes its effects on fifth-force search experiments performed in the laboratory to be observable only at the sub-mm scale. We obtain the static spherically symmetric solutions of the theory and show that a long-range force appears but it is turned on only below a fixed Newtonian acceleration scale of the order of the Hubble constant. We comment on the possibility of using this feature of the model to alleviate the CDM small scale crisis and on its possible relation to MOND.Comment: 12 pages, 2 figure

    Explaining the entropy excess in clusters and groups of galaxies without additional heating

    Get PDF
    The X-ray luminosity and temperature of clusters and groups of galaxies do not scale in a self-similar manner. This has often been interpreted as a sign that the intracluster medium has been substantially heated by non-gravitational sources. In this paper, we propose a simple model which, instead, uses the properties of galaxy formation to explain the observations. Drawing on available observations, we show that there is evidence that the efficiency of galaxy formation was higher in groups than in clusters. If confirmed, this would deplete the low-entropy gas in groups, increase their central entropy and decrease their X-ray luminosity. A simple, empirical, hydrostatic model appears to match both the luminosity-temperature relation of clusters and properties of their internal structure as well.Comment: 5 pages, 4 figures, accepted in ApJL; added one reference, otherwise unchange

    Tidal tails in CDM cosmologies

    Get PDF
    We study the formation of tidal tails in pairs of merging disk galaxies with structural properties motivated by current theories of cold dark matter (CDM) cosmologies. In a recent study, Dubinski, Mihos & Hernquist (1996) showed that the formation of prominent tidal tails can be strongly suppressed by massive and extended dark haloes. For the large halo-to-disk mass ratio expected in CDM cosmologies their sequence of models failed to produce strong tails like those observed in many well-known pairs of interacting galaxies. In order to test whether this effect can constrain the viability of CDM cosmologies, we construct N-body models of disk galaxies with structural properties derived in analogy to the analytical work of Mo, Mao & White (1998). With a series of self-consistent collisionless simulations of galaxy-galaxy mergers we demonstrate that even the disks of very massive dark haloes have no problems developing long tidal tails, provided the halo spin parameter is large enough. We show that the halo-to-disk mass ratio is a poor indicator for the ability to produce tails. Instead, the relative size of disk and halo, or alternatively, the ratio of circular velocity to local escape speed at the half mass radius of the disk are more useful criteria. This result holds in all CDM cosmologies. The length of tidal tails is thus unlikely to provide useful constraints on such models.Comment: 17 pages, mn.sty, 13 included eps-figures, submitted to MNRA

    Dynamical friction and the evolution of satellites in virialized halos: the theory of linear response

    Get PDF
    The evolution of a small satellite inside a more massive truncated isothermal spherical halo is studied using both the Theory of Linear Response for dynamical friction and N-Body simulations. The analytical approach includes the effects of the gravitational wake, of the tidal deformation and the shift of the barycenter of the primary, so unifying the local versus global interpretation of dynamical friction. Sizes, masses, orbital energies and eccentricities are chosen as expected in hierarchical clustering models. We find that in general the drag force in self-gravitating backgrounds is weaker than in uniform media and that the orbital decay is not accompanied by a significant circularization. We also show that the dynamical friction time scale is weakly dependent on the initial circularity. We provide a fitting formula for the decay time that includes the effect of mass and angular momentum loss. Live satellites with dense cores can survive disruption up to an Hubble time within the primary, notwithstanding the initial choice of orbital parameters. Dwarf spheroidal satellites of the Milky Way, like Sagittarius A and Fornax, have already suffered mass stripping and, with their present masses, the sinking times exceed 10 Gyr even if they are on very eccentric orbits.Comment: 27 pages including 9 figures. Accepted for publication in the Astrophysical Journal. Part 2, issue November 10 1999, Volume 52

    Star Formation and Feedback in Dwarf Galaxies

    Full text link
    We examine the star formation history and stellar feedback effects of dwarf galaxies under the influence of extragalactic ultraviolet radiation. We consider the dynamical evolution of gas in dwarf galaxies using a one-dimensional, spherically symmetric, Lagrangian numerical scheme to compute the effects of radiative transfer and photoionization. We include a physically-motivated star formation recipe and consider the effects of feedback. Our results indicate that star formation in the severe environment of dwarf galaxies is a difficult and inefficient process. For intermediate mass systems, such as the dSphs around the Galaxy, star formation can proceed with in early cosmic epochs despite the intense background UV flux. Triggering processes such as merger events, collisions, and tidal disturbance can lead to density enhancements, reducing the recombination timescale, allowing gas to cool and star formation to proceed. However, the star formation and gas retention efficiency may vary widely in galaxies with similar dark matter potentials, because they depend on many factors, such as the baryonic fraction, external perturbation, IMF, and background UV intensity. We suggest that the presence of very old stars in these dwarf galaxies indicates that their initial baryonic to dark matter content was comparable to the cosmic value. This constraint suggests that the initial density fluctuation of baryonic matter may be correlated with that of the dark matter. For the more massive dwarf elliptical galaxies, the star formation efficiency and gas retention rate is much higher. Their mass to light ratio is regulated by star formation feedback, and is expected to be nearly independent of their absolute luminosity. The results of our theoretical models reproduce the observed M/L−MvM/L-M_v correlation.Comment: 35 pages, 13 figure

    f(R) actions, cosmic acceleration and local tests of gravity

    Get PDF
    We study spherically symmetric solutions in f(R) theories and its compatibility with local tests of gravity. We start by clarifying the range of validity of the weak field expansion and show that for many models proposed to address the Dark Energy problem this expansion breaks down in realistic situations. This invalidates the conclusions of several papers that make inappropriate use of this expansion. For the stable models that modify gravity only at small curvatures we find that when the asymptotic background curvature is large we approximately recover the solutions of Einstein gravity through the so-called Chameleon mechanism, as a result of the non-linear dynamics of the extra scalar degree of freedom contained in the metric. In these models one would observe a transition from Einstein to scalar-tensor gravity as the Universe expands and the background curvature diminishes. Assuming an adiabatic evolution we estimate the redshift at which this transition would take place for a source with given mass and radius. We also show that models of dynamical Dark Energy claimed to be compatible with tests of gravity because the mass of the scalar is large in vacuum (e.g. those that also include R^2 corrections in the action), are not viable.Comment: 26 page
    • 

    corecore