445 research outputs found

    The Prelude to the Deep Minimum between Solar Cycles 23 and 24: Interplanetary Scintillation Signatures in the Inner Heliosphere

    Full text link
    Extensive interplanetary scintillation (IPS) observations at 327 MHz obtained between 1983 and 2009 clearly show a steady and significant drop in the turbulence levels in the entire inner heliosphere starting from around ~1995. We believe that this large-scale IPS signature, in the inner heliosphere, coupled with the fact that solar polar fields have also been declining since ~1995, provide a consistent result showing that the buildup to the deepest minimum in 100 years actually began more than a decade earlier.Comment: 9 pages, 4 figures, accepted for publication in Geophysical Research Letters on 28 September 201

    Ray-based calculations of backscatter in laser fusion targets

    Full text link
    A 1D, steady-state model for Brillouin and Raman backscatter from an inhomogeneous plasma is presented. The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam focusing are included. The numerical code DEPLETE, which implements this model, is described. The model is compared with traditional linear gain calculations, as well as "plane-wave" simulations with the paraxial propagation code pF3D. Comparisons with Brillouin-scattering experiments at the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, p. 495 (1997)] show that laser speckles greatly enhance the reflectivity over the DEPLETE results. An approximate upper bound on this enhancement, motivated by phase conjugation, is given by doubling the DEPLETE coupling coefficient. Analysis with DEPLETE of an ignition design for the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, p. 755 (1994)], with a peak radiation temperature of 285 eV, shows encouragingly low reflectivity. Re-absorption of Raman light is seen to be significant in this design.Comment: 16 pages, 19 figure

    Geophysical Observations of Taliks Below Drained Lake Basins on the Arctic Coastal Plain of Alaska

    Get PDF
    Lakes and drained lake basins (DLBs) together cover up to ∼80% of the western Arctic Coastal Plain of Alaska. The formation and drainage of lakes in this continuous permafrost region drive spatial and temporal landscape dynamics. Postdrainage processes including vegetation succession and permafrost aggradation have implications for hydrology, carbon cycling, and landscape evolution. Here, we used surface nuclear magnetic resonance (NMR) and transient electromagnetic (TEM) measurements in conjunction with thermal modeling to investigate permafrost aggradation beneath eight DLBs on the western Arctic Coastal Plain of Alaska. We also surveyed two primary surface sites that served as nonlake affected control sites. Approximate timing of lake drainage was estimated based on historical aerial imagery. We interpreted the presence of taliks based on either unfrozen water estimated with surface NMR and/or TEM resistivities in DLBs compared to measurements on primary surface sites and borehole resistivity logs. Our results show evidence of taliks below several DLBs that drained before and after 1949 (oldest imagery). We observed depths to the top of taliks between 9 and 45 m. Thermal modeling and geophysical observations agree about the presence and extent of taliks at sites that drained after 1949. Lake drainage events will likely become more frequent in the future due to climate change and our modeling results suggest that warmer and wetter conditions will limit permafrost aggradation in DLBs. Our observations provide useful information to predict future evolution of permafrost in DLBs and its implications for the water and carbon cycles in the Arctic

    Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis

    Get PDF
    One of the main consequences of mean sea level rise (SLR) on human settlements is an increase in flood risk due to an increase in the intensity and frequency of extreme sea levels (ESL). While substantial research efforts are directed towards quantifying projections and uncertainties of future global and regional SLR, corresponding uncertainties in contemporary ESL have not been assessed and projections are limited. Here we quantify, for the first time at global scale, the uncertainties in present-day ESL estimates, which have by default been ignored in broad-scale sea-level rise impact assessments to date. ESL uncertainties exceed those from global SLR projections and, assuming that we meet the Paris agreement goals, the projected SLR itself by the end of the century in many regions. Both uncertainties in SLR projections and ESL estimates need to be understood and combined to fully assess potential impacts and adaptation needs

    An L Band Spectrum of the Coldest Brown Dwarf

    Get PDF
    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1 micron (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap

    Remote sensing-based statistical approach for defining drained lake basins in a continuous Permafrost region, North Slope of Alaska

    Get PDF
    Lake formation and drainage are pervasive phenomena in permafrost regions. Drained lake basins (DLBs) are often the most common landforms in lowland permafrost regions in the Arctic (50% to 75% of the landscape). However, detailed assessments of DLB distribution and abundance are limited. In this study, we present a novel and scalable remote sensing-based approach to identifying DLBs in lowland permafrost regions, using the North Slope of Alaska as a case study. We validated this first North Slope-wide DLB data product against several previously published sub-regional scale datasets and manually classified points. The study area covered \u3e71,000 km2, including a \u3e39,000 km2 area not previously covered in existing DLB datasets. Our approach used Landsat-8 multispectral imagery and ArcticDEM data to derive a pixel-by-pixel statistical assessment of likelihood of DLB occurrence in sub-regions with different permafrost and periglacial landscape conditions, as well as to quantify aerial coverage of DLBs on the North Slope of Alaska. The results were consistent with previously published regional DLB datasets (up to 87% agreement) and showed high agreement with manually classified random points (64.4–95.5% for DLB and 83.2– 95.4% for non-DLB areas). Validation of the remote sensing-based statistical approach on the North Slope of Alaska indicated that it may be possible to extend this methodology to conduct a comprehensive assessment of DLBs in pan-Arctic lowland permafrost regions. Better resolution of the spatial distribution of DLBs in lowland permafrost regions is important for quantitative studies on landscape diversity, wildlife habitat, permafrost, hydrology, geotechnical conditions, and high-lat-itude carbon cycling
    • …
    corecore