5,791 research outputs found

    Optical Albedo Theory of Strongly-Irradiated Giant Planets: The Case of HD 209458b

    Full text link
    We calculate a new suite of albedo models for close-in extrasolar giant planets and compare with the recent stringent upper limit for HD 209458b of Rowe et al. using MOST. We find that all models without scattering clouds are consistent with this optical limit. We explore the dependence on wavelength and waveband, metallicity, the degree of heat redistribution, and the possible presence of thermal inversions and find a rich diversity of behaviors. Measurements of transiting extrasolar giant planets (EGPs) at short wavelengths by MOST, Kepler, and CoRoT, as well as by proposed dedicated multi-band missions, can complement measurements in the near- and mid-IR using {\it Spitzer} and JWST. Collectively, such measurements can help determine metallicity, compositions, atmospheric temperatures, and the cause of thermal inversions (when they arise) for EGPs with a broad range of radii, masses, degrees of stellar insolation, and ages. With this paper, we reappraise and highlight the diagnostic potential of albedo measurements of hot EGPs shortward of ∟\sim1.3 Ο\mum.Comment: 6 pages, 1 table, 1 color figure; accepted to the Astrophysical Journa

    Neutrino Signatures and the Neutrino-Driven Wind in Binary Neutron Star Mergers

    Get PDF
    We present VULCAN/2D multigroup flux-limited-diffusion radiation-hydrodynamics simulations of binary neutron star mergers, using the Shen equation of state, covering ≳ 100 ms, and starting from azimuthal-averaged two-dimensional slices obtained from three-dimensional smooth-particle-hydrodynamics simulations of Rosswog & Price for 1.4M☉ (baryonic) neutron stars with no initial spins, co-rotating spins, or counter-rotating spins. Snapshots are post-processed at 10 ms intervals with a multiangle neutrino-transport solver. We find polar-enhanced neutrino luminosities, dominated by ¯νe and “νμ” neutrinos at the peak, although νe emission may be stronger at late times. We obtain typical peak neutrino energies for νe, ¯νe, and “νμ” of ∼12, ∼16, and ∼22 MeV, respectively. The supermassive neutron star (SMNS) formed from the merger has a cooling timescale of ≾ 1 s. Charge-current neutrino reactions lead to the formation of a thermally driven bipolar wind with (M·) ∼ 10^−3 M☉ s^−1 and baryon-loading in the polar regions, preventing any production of a γ-ray burst prior to black hole formation. The large budget of rotational free energy suggests that magneto-rotational effects could produce a much-greater polar mass loss. We estimate that ≾ 10^−4 M☉ of material with an electron fraction in the range 0.1–0.2 becomes unbound during this SMNS phase as a result of neutrino heating. We present a new formalism to compute the νi ¯νi annihilation rate based on moments of the neutrino-specific intensity computed with our multiangle solver. Cumulative annihilation rates, which decay as ∼t^−1.8, decrease over our 100 ms window from a few ×1050 to ∼ 1049 erg s−1, equivalent to a few ×10^54 to ∼10^53 e−e+ pairs per second

    Perspectives on the Missiological Legacy of Martin Luther and the Protestant Reformation

    Full text link
    Upon the occasion of the 500th anniversary Martin Luther’s publication of his 95 theses, this composite article brings together five perspectives on the missiological legacy of the reformer and the subsequent Protestant Reformation. The blend of voices makes clear that Luther and the subsequent Protestant Reformation do not have a simple missiological legacy but rather various legacies: theological, ecclesiological, political, and practical; some of which co-exist, and even collide, in the same ecclesiastical community. The scandalous legacy of a splintered and splintering church remains. Yet, demonstrations of mutual recognition, reciprocal respect, and genuine fellowship can be found in certain missiological circles

    Multi-Dimensional Explorations in Supernova Theory

    No full text
    In this paper, we bring together various of our published and unpublished findings from our recent 2D multi-group, flux-limited radiation hydrodynamic simulations of the collapse and explosion of the cores of massive stars. Aided by 2D and 3D graphical renditions, we motivate the acoustic mechanism of core-collapse supernova explosions and explain, as best we currently can, the phases and phenomena that attend this mechanism. Two major foci of our presentation are the outer shock instability and the inner core g-mode oscillations. The former sets the stage for the latter, which damp by the generation of sound. This sound propagates outward to energize the explosion and is relevant only if the core has not exploded earlier by some other means. Hence, it is a more delayed mechanism than the traditional neutrino mechanism that has been studied for the last twenty years since it was championed by Bethe and Wilson. We discuss protoneutron star convection, accretion-induced-collapse, gravitational wave emissions, pulsar kicks, the angular anisotropy of the neutrino emissions, a subset of numerical issues, and a new code we are designing that should supercede our current supernova code VULCAN/2D. Whatever ideas last from this current generation of numerical results, and whatever the eventual mechanism(s), we conclude that the breaking of spherical symmetry will survive as one of the crucial keys to the supernova puzzle

    A New Mechanism for Gravitational-Wave Emission in Core-Collapse Supernovae

    Get PDF
    We present a new theory for the gravitational wave signatures of core-collapse supernovae. Previous studies identified axisymmetric rotating core collapse, core bounce, postbounce convection, and anisotropic neutrino emission as the primary processes and phases for the radiation of gravitational waves. Our results, which are based on axisymmetric, Newtonian radiation-hydrodynamics supernova simulations (Burrows et al. 2006), indicate that the dominant emission process of gravitational waves in core-collapse supernovae may be the oscillations of the protoneutron star core. The oscillations are predominantly of g-mode character, are excited hundreds of milliseconds after bounce, and typically last for several hundred milliseconds. Our results suggest that even nonrotating core-collapse supernovae should be visible to current LIGO-class detectors throughout the Galaxy, and depending on progenitor structure, possibly out to Megaparsec distances

    A Spitzer Spectrum of the Exoplanet HD 189733b

    Get PDF
    We report on the measurement of the 7.5-14.7 micron spectrum for the transiting extrasolar giant planet HD 189733b using the Infrared Spectrograph on the Spitzer Space Telescope. Though the observations comprise only 12 hours of telescope time, the continuum is well measured and has a flux ranging from 0.6 mJy to 1.8 mJy over the wavelength range, or 0.49 +/- 0.02% of the flux of the parent star. The variation in the measured fractional flux is very nearly flat over the entire wavelength range and shows no indication of significant absorption by water or methane, in contrast with the predictions of most atmospheric models. Models with strong day/night differences appear to be disfavored by the data, suggesting that heat redistribution to the night side of the planet is highly efficient.Comment: 12 pages, 3 figures, accepted for publication in the Astrophysical Journal Letter

    A New Mechanism for Gravitational Wave Emission in Core-Collapse Supernovae

    Get PDF
    We present a new theory for the gravitational wave signatures of core-collapse supernovae. Previous studies identified axisymmetric rotating core collapse, core bounce, postbounce convection, and anisotropic neutrino emission as the primary processes and phases for the radiation of gravitational waves. Our results, which are based on axisymmetric, Newtonian radiation-hydrodynamics supernova simulations (Burrows et al. 2006), indicate that the dominant emission process of gravitational waves in core-collapse supernovae may be the oscillations of the protoneutron star core. The oscillations are predominantly of g-mode character, are excited hundreds of milliseconds after bounce, and typically last for several hundred milliseconds. Our results suggest that even nonrotating core-collapse supernovae should be visible to current LIGO-class detectors throughout the Galaxy, and depending on progenitor structure, possibly out to Megaparsec distances

    Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres

    Full text link
    We calculate detailed chemical abundance profiles for a variety of brown dwarf and extrasolar giant planet atmosphere models, focusing in particular on Gliese 229B, and derive the systematics of the changes in the dominant reservoirs of the major elements with altitude and temperature. We assume an Anders and Grevesse (1989) solar composition of 27 chemical elements and track 330 gas--phase species, including the monatomic forms of the elements, as well as about 120 condensates. We address the issue of the formation and composition of clouds in the cool atmospheres of substellar objects and explore the rain out and depletion of refractories. We conclude that the opacity of clouds of low--temperature (≤\le900 K), small--radius condensibles (specific chlorides and sulfides), may be responsible for the steep spectrum of Gliese 229B observed in the near infrared below 1 \mic. Furthermore, we assemble a temperature sequence of chemical transitions in substellar atmospheres that may be used to anchor and define a sequence of spectral types for substellar objects with Teff_{eff}s from ∼\sim2200 K to ∼\sim100 K.Comment: 57 pages total, LaTeX, 14 figures, 5 tables, also available in uuencoded, gzipped, and tarred form via anonymous ftp at www.astrophysics.arizona.edu (cd to pub/burrows/chem), submitted to Ap.

    Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions

    Get PDF
    In the context of 2D, axisymmetric, multi-group, radiation/hydrodynamic simulations of core-collapse supernovae over the full 180∘^{\circ} domain, we present an exploration of the progenitor dependence of the acoustic mechanism of explosion. All progenitor models we have tested with our Newtonian code explode. We investigate the roles of the Standing-Accretion-Shock-Instability (SASI), the excitation of core g-modes, the generation of core acoustic power, the ejection of matter with r-process potential, the wind-like character of the explosion, and the fundamental anisotropy of the blasts. We find that the breaking of spherical symmetry is central to the supernova phenomenon and the blasts, when top-bottom asymmetric, are self-collimating. We see indications that the initial explosion energies are larger for the more massive progenitors, and smaller for the less massive progenitors, and that the neutrino contribution to the explosion energy may be an increasing function of progenitor mass. The degree of explosion asymmetry we obtain is completely consistent with that inferred from the polarization measurements of Type Ic supernovae. Furthermore, we calculate for the first time the magnitude and sign of the net impulse on the core due to anisotropic neutrino emission and suggest that hydrodynamic and neutrino recoils in the context of our asymmetric explosions afford a natural mechanism for observed pulsar proper motions. [abridged]Comment: Accepted to the Astrophysical Journal, 23 pages in emulateapj format, including 12 figure
    • …
    corecore