2,103 research outputs found

    Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    No full text
    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO – High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s−1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of ξ as a function of TAS is provided for instances if PAS measurements are lacking. The ξ-correction yields higher ambient particle concentration by about 15–25 % compared to conventional procedures – an improvement which can be considered as significant for many research applications. The calculated ξ-values are specifically related to the considered HALO underwing probe arrangement and may differ for other aircraft or instrument geometries. Moreover, the ξ-correction may not cover all impacts originating from high flight velocities and from interferences between the instruments and, e.g., the aircraft wings and/or fuselage. Consequently, it is important that PAS (as a function of TAS) is individually measured by each probe deployed underneath the wings of a fast-flying aircraft

    Value of T2 Mapping MRI for Prostate Cancer Detection and Classification.

    Get PDF
    Currently, multi-parametric prostate MRI (mpMRI) consists of a qualitative T <sub>2</sub> , diffusion weighted, and dynamic contrast enhanced imaging. Quantification of T <sub>2</sub> imaging might further standardize PCa detection and support artificial intelligence solutions. To evaluate the value of T <sub>2</sub> mapping to detect prostate cancer (PCa) and to differentiate PCa aggressiveness. Retrospective single center cohort study. Forty-four consecutive patients (mean age 67 years; median PSA 7.9 ng/mL) with mpMRI and verified PCa by subsequent targeted plus systematic MR/ultrasound (US)-fusion biopsy from February 2019 to December 2019. Standardized mpMRI at 3 T with an additionally acquired T <sub>2</sub> mapping sequence. Primary endpoint was the analysis of quantitative T <sub>2</sub> values and contrast differences/ratios (CD/CR) between PCa and benign tissue. Secondary objectives were the correlation between T <sub>2</sub> values, ISUP grade, apparent diffusion coefficient (ADC) value, and PI-RADS, and the evaluation of thresholds for differentiating PCa and clinically significant PCa (csPCa). Mann-Whitney test, Spearman's rank (r <sub>s</sub> ) correlation, receiver operating curves, Youden's index (J), and AUC were performed. Statistical significance was defined as P < 0.05. Median quantitative T <sub>2</sub> values were significantly lower for PCa in PZ (85 msec) and PCa in TZ (75 msec) compared to benign PZ (141 msec) or TZ (97 msec) (P < 0.001). CD/CR between PCa and benign PZ (51.2/1.77), respectively TZ (19.8/1.29), differed significantly (P < 0.001). The best T <sub>2</sub> -mapping threshold for PCa/csPCa detection was for TZ 81/86 msec (J = 0.929/1.0), and for PZ 110 msec (J = 0.834/0.905). Quantitative T <sub>2</sub> values of PCa did not correlate significantly with the ISUP grade (r <sub>s</sub> = 0.186; P = 0.226), ADC value (r <sub>s</sub> = 0.138; P = 0.372), or PI-RADS (r <sub>s</sub> = 0.132; P = 0.392). Quantitative T <sub>2</sub> values could differentiate PCa in TZ and PZ and might support standardization of mpMRI of the prostate. Different thresholds seem to apply for PZ and TZ lesions. However, in the present study quantitative T <sub>2</sub> values were not able to indicate PCa aggressiveness. 2 TECHNICAL EFFICACY: Stage 2

    The silting of Carbondale Reservoir: Carbondale, Illinois

    Get PDF
    "Illinois State Water Survey Division, Soil Conservation Service, United States Department of Agriculture, and Illinois Agricultural Experiment Station with local aid from the city of Carbondale."Enumeration continues through succeeding title

    Intergenerational family caregiving in welfare policy context

    Get PDF
    Definition Intergenerational family caregiving refers to exchanges up and down family lines aimed at nurturing the needs of others. Caregiving is more than a task; it involves emotional and relationship work

    Prospective Newborn Screening for SCID in Germany: A First Analysis by the Pediatric Immunology Working Group (API)

    Get PDF
    Background: T-cell receptor excision circle (TREC)-based newborn screening (NBS) for severe combined immunodeficiencies (SCID) was introduced in Germany in August 2019. / Methods: Children with abnormal TREC-NBS were referred to a newly established network of Combined Immunodeficiency (CID) Clinics and Centers. The Working Group for Pediatric Immunology (API) and German Society for Newborn Screening (DGNS) performed 6-monthly surveys to assess the TREC-NBS process after 2.5 years. / Results: Among 1.9 million screened newborns, 88 patients with congenital T-cell lymphocytopenia were identified (25 SCID, 17 leaky SCID/Omenn syndrome (OS)/idiopathic T-cell lymphocytopenia, and 46 syndromic disorders). A genetic diagnosis was established in 88%. Twenty-six patients underwent hematopoietic stem cell transplantation (HSCT), 23/26 within 4 months of life. Of these, 25/26 (96%) were alive at last follow-up. Two patients presented with in utero onset OS and died after birth. Five patients with syndromic disorders underwent thymus transplantation. Eight syndromic patients deceased, all from non-immunological complications. TREC-NBS missed one patient, who later presented clinically, and one tracking failure occurred after an inconclusive screening result. / Conclusion: The German TREC-NBS represents the largest European SCID screening at this point. The incidence of SCID/leaky SCID/OS in Germany is approximately 1:54,000, very similar to previous observations from North American and European regions and countries where TREC-NBS was implemented. The newly founded API-CID network facilitates tracking and treatment of identified patients. Short-term HSCT outcome was excellent, but NBS and transplant registries will remain essential to evaluate the long-term outcome and to compare results across the rising numbers of TREC-NBS programs across Europe
    corecore