1,118 research outputs found
Nonlocality in many-body quantum systems detected with two-body correlators
Contemporary understanding of correlations in quantum many-body systems and
in quantum phase transitions is based to a large extent on the recent intensive
studies of entanglement in many-body systems. In contrast, much less is known
about the role of quantum nonlocality in these systems, mostly because the
available multipartite Bell inequalities involve high-order correlations among
many particles, which are hard to access theoretically, and even harder
experimentally. Standard, "theorist- and experimentalist-friendly" many-body
observables involve correlations among only few (one, two, rarely three...)
particles. Typically, there is no multipartite Bell inequality for this
scenario based on such low-order correlations. Recently, however, we have
succeeded in constructing multipartite Bell inequalities that involve two- and
one-body correlations only, and showed how they revealed the nonlocality in
many-body systems relevant for nuclear and atomic physics [Science 344, 1256
(2014)]. With the present contribution we continue our work on this problem. On
the one hand, we present a detailed derivation of the above Bell inequalities,
pertaining to permutation symmetry among the involved parties. On the other
hand, we present a couple of new results concerning such Bell inequalities.
First, we characterize their tightness. We then discuss maximal quantum
violations of these inequalities in the general case, and their scaling with
the number of parties. Moreover, we provide new classes of two-body Bell
inequalities which reveal nonlocality of the Dicke states---ground states of
physically relevant and experimentally realizable Hamiltonians. Finally, we
shortly discuss various scenarios for nonlocality detection in mesoscopic
systems of trapped ions or atoms, and by atoms trapped in the vicinity of
designed nanostructures.Comment: 46 pages (25.2 + appendices), 7 figure
Insights on scalar mesons from their radiative decays
We estimate the rates for radiative transitions of the lightest scalar mesons
f_0(980) and a_0(980) to the vector mesons rho and omega. We argue that
measurements of the radiative decays of those scalar mesons can provide
important new information on their structure.Comment: 20 pages, 5 figures; appendix added, to be published in Phys. Rev.
KRb Feshbach Resonances: Modeling the interatomic potential
We have observed 28 heteronuclear Feshbach resonances in 10 spin combinations
of the hyperfine ground states of a 40K 87Rb mixture. The measurements were
performed by observing the loss rates from an atomic mixture at magnetic fields
between 0 and 700 G. This data was used to significantly refine an interatomic
potential derived from molecular spectroscopy, yielding a highly consistent
model of the KRb interaction. Thus, the measured resonances can be assigned to
the corresponding molecular states. In addition, this potential allows for an
accurate calculation of the energy differences between highly excited levels
and the rovibrational ground level. This information is of particular relevance
for the formation of deeply bound heteronuclear molecules. Finally, the model
is used to predict Feshbach resonances in mixtures of 87Rb combined with 39K or
41K.Comment: 4 pages, 3 figure
Interaction-free measurements by quantum Zeno stabilisation of ultracold atoms
Quantum mechanics predicts that our physical reality is influenced by events
that can potentially happen but factually do not occur. Interaction-free
measurements (IFMs) exploit this counterintuitive influence to detect the
presence of an object without requiring any interaction with it. Here we
propose and realize an IFM concept based on an unstable many-particle system.
In our experiments, we employ an ultracold gas in an unstable spin
configuration which can undergo a rapid decay. The object - realized by a laser
beam - prevents this decay due to the indirect quantum Zeno effect and thus,
its presence can be detected without interacting with a single atom. Contrary
to existing proposals, our IFM does not require single-particle sources and is
only weakly affected by losses and decoherence. We demonstrate confidence
levels of 90%, well beyond previous optical experiments.Comment: manuscript with 5 figures, 3 supplementary figure, 1 supplementary
not
Possible glueball production in relativistic heavy-ion collisions
Within a thermal model we estimate possible multiplicities of scalar
glueballs in central Au+Au collisions at AGS, SPS, RHIC and LHC energies. For
the glueball mass in the region 1.5-1.7 GeV, the model predicts on average (per
event) 0.5-1.5 glueballs at RHIC and 1.5-4 glueballs at LHC energies. Possible
enhancement mechanisms are discussed.Comment: 8 pages, 2 figure
0.75 atoms improve the clock signal of 10,000 atoms
Since the pioneering work of Ramsey, atom interferometers are employed for
precision metrology, in particular to measure time and to realize the second.
In a classical interferometer, an ensemble of atoms is prepared in one of the
two input states, whereas the second one is left empty. In this case, the
vacuum noise restricts the precision of the interferometer to the standard
quantum limit (SQL). Here, we propose and experimentally demonstrate a novel
clock configuration that surpasses the SQL by squeezing the vacuum in the empty
input state. We create a squeezed vacuum state containing an average of 0.75
atoms to improve the clock sensitivity of 10,000 atoms by 2.05 dB. The SQL
poses a significant limitation for today's microwave fountain clocks, which
serve as the main time reference. We evaluate the major technical limitations
and challenges for devising a next generation of fountain clocks based on
atomic squeezed vacuum.Comment: 9 pages, 6 figure
Light Hadron Spectroscopy: Theory and Experiment
Rapporteur talk at the Lepton-Photon Conference, Rome, July 2001: reviewing
the evidence and strategies for understanding scalar mesons, glueballs and
hybrids, the gluonic Pomeron and the interplay of heavy flavours and light
hadron dynamics. Dedicated to the memory of Nathan Isgur, long-time
collaborator and friend, whose original ideas in hadron spectroscopy formed the
basis for much of the talk.Comment: to be published in "Lepton Photon 2001 Conference Proceedings" (World
Scientific Publishing), 19 pages with 6 figure
- …