236 research outputs found

    The Fe XXII I(11.92 A)/I(11.77 A) Density Diagnostic Applied to the Chandra High Energy Transmission Grating Spectrum of EX Hydrae

    Full text link
    Using the Livermore X-ray Spectral Synthesizer, which calculates spectral models of highly charged ions based primarily on HULLAC atomic data, we investigate the temperature, density, and photoexcitation dependence of the I(11.92 A)/I(11.77 A) line ratio of Fe XXII. We find that this line ratio has a critical density n_c \approx 5x10^13 cm^-3, is approximately 0.3 at low densities and 1.5 at high densities, and is very insensitive to temperature and photoexcitation, so is a useful density diagnostic for sources like magnetic cataclysmic variables in which the plasma densities are high and the efficacy of the He-like ion density diagnostic is compromised by the presence of a bright ultraviolet continuum. Applying this diagnostic to the Chandra High Energy Transmission Grating spectrum of the intermediate polar EX Hya, we find that the electron density of its T_e \approx 12 MK plasma is n_e = 1.0^{+2.0}_{-0.5} x 10^14 cm^-3, orders of magnitude greater than that typically observed in the Sun or other late-type stars.Comment: 11 pages including 3 encapsulated postscript figures; LaTeX format, uses aastex.cls; accepted on 2003 April 3 for publication in The Astrophysical Journa

    The Chandra Iron-L X-Ray Line Spectrum of Capella

    Full text link
    An analysis of the iron L-shell emission in the publicly available spectrum of the Capella binary system, as obtained by the High Energy Transmission Grating Spectrometer on board the Chandra X-ray Observatory, is presented. The atomic-state model, based on the HULLAC code, is shown to be especially adequate for analyzing high-resolution x-ray spectra of this sort. Almost all of the spectral lines in the 10 - 18 Angstrom wavelength range are identified. It is shown that, for the most part, these lines can be attributed to emission from L-shell iron ions in the Capella coronae. Possibilities for electron temperature diagnostics using line ratios of Fe16+ are demonstrated. It is shown that the observed iron-L spectrum can be reproduced almost entirely by assuming a single electron temperature of kTe= 600 eV. This temperature is consistent with both the measured fractional ion abundances of iron and with the temperature derived from ratios of Fe16+ lines. A volume emission measure of 1053 cm-3 is calculated for the iron L-shell emitting regions of the Capella coronae indicating a rather small volume of 1029 cm3 for the emitting plasma if an electron density of 1012 cm-3 is assumed.Comment: Accepted to Ap

    First Application of the Fe XVII I(17.10 A)/I(17.05 A) Line Ratio to Constrain the Plasma Density of a Cosmic X-ray Source

    Full text link
    We show that the Fe XVII I(17.10 A)/I(17.05 A) line ratio observed in the Chandra HETG spectrum of the intermediate polar EX Hydrae is significantly smaller than that observed in the Sun or other late-type stars. Using the Livermore X-ray Spectral Synthesizer, which calculates spectral models of highly charged ions based on HULLAC atomic data, we find that the observed I(17.10 A)/I(17.05 A) line ratio can be explained if the plasma density n_e > 3x10^{14} cm^{-3}. However, if photoexcitation is included in the level population kinetics, the line ratio can be explained for any density if the photoexcitation temperature T_bb > 55 kK. For photoexcitation to dominate the Fe XVII level population kinetics, the relative size of the hotspot on the white dwarf surface must be f < 2%. This constraint and the observed X-ray flux requires a density n > 2x10^{14} cm^{-3} for the post-shock flow. Either way, then, the Chandra HETG spectrum of EX Hya requires a plasma density which is orders of magnitude greater than that observed in the Sun or other late-type stars.Comment: 13 pages including 1 table and 4 encapsulated postscript figures; LaTeX format, uses aastex.cls; accepted on 2001 June 27 for publication in The Astrophysical Journa

    Identification of an Extended Accretion Disk Corona in the Hercules X-1 Low State: Moderate Optical Depth, Precise Density Determination, and Verification of CNO Abundances

    Full text link
    We identify an accretion disk atmosphere and corona from the high resolution X-ray spectrum of Hercules X-1, and we determine its detailed physical properties. More than two dozen recombination emission lines (from Fe XXVI at 1.78 A to N VI at 29.08 A) and Fe K-alpha, K-beta fluorescence lines were detected in a 50 ks observation with the Chandra High-Energy Transmission Grating Spectrometer (HETGS). They allow us to measure the density, temperature, spatial distribution, elemental composition, and kinematics of the plasma. We exclude HZ Her as the source of the recombination emission. We compare accretion disk model atmospheres with the observed spectrum in order to constrain the stratification of density and ionization, disk atmosphere area, elemental composition, and energetics. The atmospheric spectrum observed during the low state is photoionized by the main-on X-ray continuum, indicating that the disk is observed edge-on during the low state. We infer the mean number of scatterings N of Ly-alpha and Ly-beta line photons from H-like ions. We derive N < 69 for O VIII Ly_alpha_1, which rules out the presence of a mechanism modeled by Sako (2003) to enhance N VII emission via a line overlap with O VIII. The line optical depth diagnostics are consistent with a flattened atmosphere. Our spectral analysis, the disk atmosphere model, and the presence of intense N VII and N VI lines (plus N V in the UV), confirm the over-abundance of nitrogen relative to other metals, which was shown to be indicative of CNO cycle processing in a massive progenitor.Comment: 38 pages, 14 figures, accepted for publication in Ap

    Collisional Plasma Models with APEC/APED: Emission Line Diagnostics of Hydrogen-like and Helium-like Ions

    Full text link
    New X-ray observatories (Chandra and XMM-Newton) are providing a wealth of high-resolution X-ray spectra in which hydrogen- and helium-like ions are usually strong features. We present results from a new collisional-radiative plasma code, the Astrophysical Plasma Emission Code (APEC), which uses atomic data in the companion Astrophysical Plasma Emission Database (APED) to calculate spectral models for hot plasmas. APED contains the requisite atomic data such as collisional and radiative rates, recombination cross sections, dielectronic recombination rates, and satellite line wavelengths. We compare the APEC results to other plasma codes for hydrogen- and helium-like diagnostics, and test the sensitivity of our results to the number of levels included in the models. We find that dielectronic recombination with hydrogen-like ions into high (n=6-10) principal quantum numbers affects some helium-like line ratios from low-lying (n=2) transitions.Comment: 5 pages, 6 figures, accepted by ApJ Letter

    The y activity from 11Li beta decay

    No full text
    The energies and absolute intensities of the γ-rays from the β-decay of 11Li are measured. There is no sizable β branch to the 11Be ground state. Only (5.2 ± 1.4) % of the β-decay strength does not lead to β-delayed particle emission. New β-delayed neutron branches to excited states of 10Be are observed and the total delayed neutron emission probability is deduced

    Fission-Residues Produced in the Spallation Reaction 238U+p at 1 A GeV

    Full text link
    Fission fragments from 1 A GeV 238U projectiles irradiating a hydrogen target were investigated by using the fragment separator FRS for magnetic selection of reaction products including ray-tracing and DE-ToF techniques. The momentum spectra of 733 identified fragments were analysed to provide isotopic production cross sections, fission-fragment velocities and recoil momenta of the fissioning parent nuclei. Besides their general relevance, these quantities are also demanded for applications. Calculations and simulations with codes commonly used and recently developed or improved are compared to the data.Comment: 60 pages, 21 figures, 4 tables, 2 appendices (15 pages
    corecore