509 research outputs found

    Literature

    Get PDF
    Literature has been proposed as a means to enrich an understanding of ethical issues within medicine and health care and as a resource in medical education. Its proponents argue for the value of understanding human suffering, and the experience of health care, through literature, rather than solely through the more abstract and analytic philosophical methods of bioethics. Literature is claimed to serve as a corrective to the rational and individualist approaches of bioethics, by drawing attention to ‘our vulnerable and interdependent human existence.’ In this essay the history of a relationship between ethics and literature is discussed, along with more recent scholarship on the ethical relevance of literature, and research focusing on the constitution of ethics as literary form. It is apparent that literature, and especially futurist writing and science fiction, has an influence on the construction and understanding of ethical issues for both specialist practitioners and the lay public. It is concluded that literature enhances understanding of ethical issues in health care and research, and the manner in which it does so needs to be better understood through the skills of literary analysis as a necessary complement to bioethical analysis

    Improving design education at Kanazawa Intitute of Technology

    Get PDF
    A Task Force made up of a multicultural group of visiting professors at KIT, worked together with Japanese counterparts to develop materials to Improve Design Education At Kanazawa Institute of Technology (IDEA-KIT), Japan. The IDEA-KIT Task Force decided to use the Design Engineering Process that we teach to address the problem related to improving design education. The Task Force mission was to identify problems and needs in Engineering Design Education (EDE), to develop design specifications for educational materials to meet these needs, to generate a large number of concepts for ways to satisfy the design specifications, and select the best and most feasible ones for development to a level appropriate for classroom use in the autumn quarter of 1999. To facilitate implementation at KIT, all materials developed were to be modular, easy to use for both the faculty and students, and provide guidance in managing courses and standardising practices.As with any new programme, there were significant challenges in developing and implementing the EDE programme at KIT. While some challenges were anticipated, most did not show their true difficulty until experience in running the programme was available

    Neonicotinoids Disrupt Circadian Rhythms and Sleep in Honey Bees

    Get PDF
    Honey bees are critical pollinators in ecosystems and agriculture, but their numbers have significantly declined. Declines in pollinator populations are thought to be due to multiple factors including habitat loss, climate change, increased vulnerability to disease and parasites, and pesticide use. Neonicotinoid pesticides are agonists of insect nicotinic cholinergic receptors, and sub-lethal exposures are linked to reduced honey bee hive survival. Honey bees are highly dependent on circadian clocks to regulate critical behaviors, such as foraging orientation and navigation, time-memory for food sources, sleep, and learning/memory processes. Because circadian clock neurons in insects receive light input through cholinergic signaling we tested for effects of neonicotinoids on honey bee circadian rhythms and sleep. Neonicotinoid ingestion by feeding over several days results in neonicotinoid accumulation in the bee brain, disrupts circadian rhythmicity in many individual bees, shifts the timing of behavioral circadian rhythms in bees that remain rhythmic, and impairs sleep. Neonicotinoids and light input act synergistically to disrupt bee circadian behavior, and neonicotinoids directly stimulate wake-promoting clock neurons in the fruit fly brain. Neonicotinoids disrupt honey bee circadian rhythms and sleep, likely by aberrant stimulation of clock neurons, to potentially impair honey bee navigation, time-memory, and social communication

    Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918

    Get PDF
    The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized

    Flocculation of influenza virus by specific anti-neuraminidase antibody

    Full text link
    1. Flocculation of purified preparations of influenza virus has been demonstrated to occur in the presence of low dilutions of specific anti-neuraminidase sera. High dilutions of the sera caused microscopic aggregation of virions. It is suggested that the effects of anti-neuraminidase antibody on the replication of influenza virus observed in vitro could be caused by antibody binding virions to infected cells, rather than by inhibition of neuraminidase enzymic activity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41680/1/705_2005_Article_BF01253756.pd

    Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees

    Get PDF
    The authors are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition-that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging'' and "leaf-sponge re-use,'' in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural'' of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.Publisher PDFPeer reviewe
    • …
    corecore