53,818 research outputs found

    Thermal performance and energy savings of white and sedum-tray garden roof: A case study in a Chongqing office building

    Get PDF
    This study presents the experimental measurement of the energy consumption of three top-floor air-conditioned rooms in a typical office building in Chongqing, which is a mountainous city in the hot-summer and cold-winter zone of China, to examine the energy performance of white and sedum-tray garden roofs. The energy consumption of the three rooms was measured from September 2014 to September 2015 by monitoring the energy performance (temperature distributions of the roofs, evaporation, heat fluxes, and energy consumption) and indoor air temperature. The rooms had the same construction and appliances, except that one roof top was black, one was white, and one had a sedum-tray garden roof. This study references the International Performance Measurement and Verification Protocol (IPMVP) to calculate and compare the energy savings of the three kinds of roofs. The results indicate that the energy savings ratios of the rooms with the sedum-tray garden roof and with the white roof were 25.0% and 20.5%, respectively, as compared with the black-roofed room, in the summer; by contrast, the energy savings ratios were −9.9% and −2.7%, respectively, in the winter. Furthermore, Annual conditioning energy savings of white roof (3.9 kWh/m2) were 1.6 times the energy savings for the sedum-tray garden roof. It is evident that white roof is a preferable choice for office buildings in Chongqing. Additionally, The white roof had a reflectance of 0.58 after natural aging owing to the serious air pollution worsened its thermal performance, and the energy savings reduced by 0.033 kWh/m2·d. Evaporation was also identified to have a significant effect on the energy savings of the sedum-tray garden roof

    Polarized entangled Bose-Einstein condensation

    Full text link
    We consider a mixture of two distinct species of atoms of pseudospin-1/2 with both intraspecies and Interspecies spin-exchange interactions, and find all the ground stats in a general case of the parameters in the effective Hamiltonian. In general, corresponding to the two species and two pseudo-spin states, there are four orbital wave functions into which the atoms condense. We find that in certain parameter regimes, the ground state is the so-called polarized entangled Bose-Einstein condensation, i.e. in addition to condensation of interspecies singlet pairs, there are unpaired atoms with spins polarized in the same direction. The interspecies entanglement and polarization significantly affect the generalized Gross-Pitaevskii equations governing the four orbital wave functions into which the atoms condense, as an interesting interplay between spin and orbital degrees of freedom.Comment: 14 pages, received by PRA on 27 October 201

    Spin-polarized tunneling spectroscopic studies of the intrinsic heterogeneity and pseudogap phenomena in colossal magnetoresistive manganite La_{0.7}Ca_{0.3}MnO_{3}

    Get PDF
    Spatially resolved tunneling spectroscopic studies of colossal magnetoresistive (CMR) manganite La0.7Ca0.3MnO3\rm La_{0.7}Ca_{0.3}MnO_3 (LCMO) epitaxial films on (LaAlO3)0.3(Sr2AlTaO6)0.7\rm (LaAlO_3)_{0.3}(Sr_2AlTaO_6)_{0.7} substrate are investigated as functions of temperature, magnetic field and spin polarization by means of scanning tunneling spectroscopy. Systematic surveys of the tunneling spectra taken with Pt/Ir tips reveal spatial variations on the length scale of a few hundred nanometers in the ferromagnetic state, which may be attributed to the intrinsic heterogeneity of the manganites due to their tendency towards phase separation. The electronic heterogeneity is found to decrease either with increasing field at low temperatures or at temperatures above all magnetic ordering temperatures. On the other hand, spectra taken with Cr-coated tips are consistent with convoluted electronic properties of both LCMO and Cr. In particular, for temperatures below the magnetic ordering temperatures of both Cr and LCMO, the magnetic-field dependent tunneling spectra may be quantitatively explained by the scenario of spin-polarized tunneling in a spin-valve configuration. Moreover, a low-energy insulating energy gap ∼0.6\sim 0.6 eV commonly found in the tunneling conductance spectra of bulk metallic LCMO at T→0T \to 0 may be attributed to a surface ferromagnetic insulating (FI) phase, as evidenced by its spin filtering effect at low temperatures and vanishing gap value above the Curie temperature. Additionally, temperature independent pseudogap (PG) phenomena existing primarily along the boundaries of magnetic domains are observed in the zero-field tunneling spectra. The PG becomes strongly suppressed by applied magnetic fields at low temperatures when the tunneling spectra of LCMO become highly homogeneous. These findings suggest that the occurrence PG is associated with the electronic heterogeneity of the manganites.Comment: 15 pages, 15 figures. Published in Physical Review B. Corresponding author: Nai-Chang Yeh (E-mail: [email protected]

    Polarizabilities of the 87Sr Clock Transition

    Full text link
    In this paper, we propose an in-depth review of the vector and tensor polarizabilities of the two energy levels of the 87Sr clock transition whose measurement was reported in [P. G. Westergaard et al., Phys. Rev. Lett. 106, 210801 (2011)]. We conduct a theoretical calculation that reproduces the measured coefficients. In addition, we detail the experimental conditions used for their measurement in two Sr optical lattice clocks, and exhibit the quadratic behaviour of the vector and tensor shifts with the depth of the trapping potential and evaluate their impact on the accuracy of the clock

    Feasibility of Experimental Realization of Entangled Bose-Einstein Condensation

    Full text link
    We examine the practical feasibility of the experimental realization of the so-called entangled Bose-Einstein condensation (BEC), occurring in an entangled state of two atoms of different species. We demonstrate that if the energy gap remains vanishing, the entangled BEC persists as the ground state of the concerned model in a wide parameter regime. We establish the experimental accessibility of the isotropic point of the effective parameters, in which the entangled BEC is the exact ground state, as well as the consistency with the generalized Gross-Pitaevskii equations. The transition temperature is estimated. Possible experimental implementations are discussed in detail.Comment: 6 pages, published versio

    Lehmann-Symanzik-Zimmermann Reduction Approach to Multi-Photon Scattering in Coupled-Resonator Arrays

    Full text link
    We present a quantum field theoretical approach based on the Lehmann-Symanzik-Zimmermann reduction for the multi-photon scattering process in a nano-architecture consisting of the coupled resonator arrays (CRA), which are also coupled to some artificial atoms as the controlling quantum node. By making use of this approach, we find the bound states of single photon for an elementary unit, the T-type CRA, and explicitly obtain its multi-photon scattering S-matrix in various situations. We also use this method to calculate the multi-photon S-matrices for the more complex quantum network constructed with main T-type CRA's, such as a H-type CRA waveguide.Comment: 15 pages, 14 figure

    Self-consistent tilted-axis-cranking study of triaxial strongly deformed bands in 158^{158}Er at ultrahigh spin

    Full text link
    Stimulated by recent experimental discoveries, triaxial strongly deformed (TSD) states in 158^{158}Er at ultrahigh spins have been studied by means of the Skyrme-Hartree-Fock model and the tilted-axis-cranking method. Restricting the rotational axis to one of the principal axes -- as done in previous cranking calculations -- two well-defined TSD minima in the total Routhian surface are found for a given configuration: one with positive and another with negative triaxial deformation γ\gamma. By allowing the rotational axis to change direction, the higher-energy minimum is shown to be a saddle point. This resolves the long-standing question of the physical interpretation of the two triaxial minima at a very similar quadrupole shape obtained in the principal axis cranking approach. Several TSD configurations have been predicted, including a highly deformed band expected to cross lesser elongated TSD bands at the highest spins. Its transitional quadrupole moment Qt≈10.5Q_t \approx 10.5\,eb is close to the measured value of ∼\sim11\,eb; hence, it is a candidate for the structure observed in experiment.Comment: 5 pages, 5 figure

    Torsion–rotation global analysis of the first three torsional states (νt = 0, 1, 2) and terahertz database for methanol

    Get PDF
    Stimulated by recent THz measurements of the methanol spectrum in one of our laboratories, undertaken in support of NASA programs related to the Herschel Space Observatory (HSO) and the Atacama Large Millimeter Array (ALMA), we have carried out a global analysis of available microwave and high-resolution infrared data for the first three torsional states (νt = 0, 1, 2), and for J values up to 30. This global fit of approximately 5600 frequency measurements and 19 000 Fourier transform far infrared (FTFIR) wavenumber measurements to 119 parameters reaches the estimated experimental measurement accuracy for the FTFIR transitions, and about twice the estimated experimental measurement accuracy for the microwave, submillimeter-wave, and terahertz transitions. The present fit is essentially a continuation of our earlier work, but we have greatly expanded our previous data set and have added a large number of new torsion–rotation interaction terms to the Hamiltonian in our previously used computer program. The results, together with a number of calculated (but unmeasured) transitions, including their line strength, estimated uncertainty, and lower state energy, are made available in the supplementary material as a database formatted to be useful for astronomical searches. Some discussion of several open spectroscopic problems, e.g., (i) an improved notation for the numerous parameters in the torsion–rotation Hamiltonian, (ii) possible causes of the failure to fit frequency measurements to the estimated measurement uncertainty, and (iii) pitfalls to be avoided when intercomparing apparently identical parameters from the internal axis method and the rho axis method are also given
    • …
    corecore