7,039 research outputs found

    Detecting ground state qubit self-excitations in circuit QED: slow quantum anti-Zeno effect

    Get PDF
    In this work we study an ultrastrong coupled qubit-cavity system subjected to slow repeated measurements. We demonstrate that even under a few imperfect measurements it is possible to detect transitions of the qubit from its free ground state to the excited state. The excitation probability grows exponentially fast in analogy with the quantum anti-Zeno effect. The dynamics and physics described in this paper is accessible to current superconducting circuit technology.Comment: 6 pages, 6 figures. v2: extended published versio

    Hamilton-Jacobi Theory in k-Symplectic Field Theories

    Full text link
    In this paper we extend the geometric formalism of Hamilton-Jacobi theory for Mechanics to the case of classical field theories in the k-symplectic framework

    Time-dependent Mechanics and Lagrangian submanifolds of Dirac manifolds

    Full text link
    A description of time-dependent Mechanics in terms of Lagrangian submanifolds of Dirac manifolds (in particular, presymplectic and Poisson manifolds) is presented. Two new Tulczyjew triples are discussed. The first one is adapted to the restricted Hamiltonian formalism and the second one is adapted to the extended Hamiltonian formalism

    Singular Lagrangian Systems on Jet Bundles

    Get PDF
    The jet bundle description of time-dependent mechanics is revisited. The constraint algorithm for singular Lagrangians is discussed and an exhaustive description of the constraint functions is given. By means of auxiliary connections we give a basis of constraint functions in the Lagrangian and Hamiltonian sides. An additional description of constraints is also given considering at the same time compatibility, stability and second-order condition problems. Finally, a classification of the constraints in first and second class is obtained using a cosymplectic geometry setting. Using the second class constraints, a Dirac bracket is introduced, extending the well-known construction by Dirac.Comment: 65 pages. LaTeX fil

    Radiative corrections to the Dalitz plot of K_{l3}^\pm decays

    Full text link
    We calculate the model-independent radiative corrections to the Dalitz plot of K_{l3}^\pm decays to order (\alpha/\pi)(q/M_1), where q is the momentum transfer and M_1 is the mass of the kaon. The final results are presented, first, with the triple integration over the variables of the bremsstrahlung photon ready to be performed numerically and, second, in an analytical form. These two forms are useful to crosscheck on one another and with other calculations. This paper is organized to make it accessible and reliable in the analysis of the Dalitz plot of precision experiments and is not compromised to fixing the form factors at predetermined values. It is assumed that the real photons are kinematically discriminated. Otherwise, our results have a general model-independent applicability.Comment: RevTex4, 38 pages, 5 figures, 5 tables; some typos corrected; discussion extended to compare with other result

    Nonholonomic constraints in kk-symplectic Classical Field Theories

    Get PDF
    A kk-symplectic framework for classical field theories subject to nonholonomic constraints is presented. If the constrained problem is regular one can construct a projection operator such that the solutions of the constrained problem are obtained by projecting the solutions of the free problem. Symmetries for the nonholonomic system are introduced and we show that for every such symmetry, there exist a nonholonomic momentum equation. The proposed formalism permits to introduce in a simple way many tools of nonholonomic mechanics to nonholonomic field theories.Comment: 27 page

    Unveiling quantum entanglement degradation near a Schwarzschild black hole

    Get PDF
    We analyze the entanglement degradation provoked by the Hawking effect in a bipartite system Alice-Rob when Rob is in the proximities of a Schwarzschild black hole while Alice is free falling into it. We will obtain the limit in which the tools imported from the Unruh entanglement degradation phenomenon can be used properly, keeping control on the approximation. As a result, we will be able to determine the degree of entanglement as a function of the distance of Rob to the event horizon, the mass of the black hole, and the frequency of Rob's entangled modes. By means of this analysis we will show that all the interesting phenomena occur in the vicinity of the event horizon and that the presence of event horizons do not effectively degrade the entanglement when Rob is far off the black hole. The universality of the phenomenon is presented: There are not fundamental differences for different masses when working in the natural unit system adapted to each black hole. We also discuss some aspects of the localization of Alice and Rob states. All this study is done without using the single mode approximation.Comment: 16 pages, 10 figures, revtex4. Added Journal referenc
    corecore