17 research outputs found

    Impurity-induced diffusion bias in epitaxial growth

    Full text link
    We introduce two models for the action of impurities in epitaxial growth. In the first, the interaction between the diffusing adatoms and the impurities is ``barrier''-like and, in the second, it is ``trap''-like. For the barrier model, we find a symmetry breaking effect that leads to an overall down-hill current. As expected, such a current produces Edwards-Wilkinson scaling. For the trap model, no symmetry breaking occurs and the scaling behavior appears to be of the conserved-KPZ type.Comment: 5 pages(with the 5 figures), latex, revtex3.0, epsf, rotate, multico

    A Simple Model for Anisotropic Step Growth

    Get PDF
    We consider a simple model for the growth of isolated steps on a vicinal crystal surface. It incorporates diffusion and drift of adatoms on the terrace, and strong step and kink edge barriers. Using a combination of analytic methods and Monte Carlo simulations, we study the morphology of growing steps in detail. In particular, under typical Molecular Beam Epitaxy conditions the step morphology is linearly unstable in the model and develops fingers separated by deep cracks. The vertical roughness of the step grows linearly in time, while horizontally the fingers coarsen proportional to t0.33t^{0.33}. We develop scaling arguments to study the saturation of the ledge morphology for a finite width and length of the terrace.Comment: 20 pages, 12 figures; [email protected]

    MMDB: 3D structures and macromolecular interactions

    Get PDF
    Close to 60% of protein sequences tracked in comprehensive databases can be mapped to a known three-dimensional (3D) structure by standard sequence similarity searches. Potentially, a great deal can be learned about proteins or protein families of interest from considering 3D structure, and to this day 3D structure data may remain an underutilized resource. Here we present enhancements in the Molecular Modeling Database (MMDB) and its data presentation, specifically pertaining to biologically relevant complexes and molecular interactions. MMDB is tightly integrated with NCBI's Entrez search and retrieval system, and mirrors the contents of the Protein Data Bank. It links protein 3D structure data with sequence data, sequence classification resources and PubChem, a repository of small-molecule chemical structures and their biological activities, facilitating access to 3D structure data not only for structural biologists, but also for molecular biologists and chemists. MMDB provides a complete set of detailed and pre-computed structural alignments obtained with the VAST algorithm, and provides visualization tools for 3D structure and structure/sequence alignment via the molecular graphics viewer Cn3D. MMDB can be accessed at http://www.ncbi.nlm.nih.gov/structure

    CDD: a Conserved Domain Database for the functional annotation of proteins

    Get PDF
    NCBI’s Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml

    CDD: specific functional annotation with the Conserved Domain Database

    Get PDF
    NCBI's Conserved Domain Database (CDD) is a collection of multiple sequence alignments and derived database search models, which represent protein domains conserved in molecular evolution. The collection can be accessed at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, and is also part of NCBI's Entrez query and retrieval system, cross-linked to numerous other resources. CDD provides annotation of domain footprints and conserved functional sites on protein sequences. Precalculated domain annotation can be retrieved for protein sequences tracked in NCBI's Entrez system, and CDD's collection of models can be queried with novel protein sequences via the CD-Search service at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. Starting with the latest version of CDD, v2.14, information from redundant and homologous domain models is summarized at a superfamily level, and domain annotation on proteins is flagged as either ‘specific’ (identifying molecular function with high confidence) or as ‘non-specific’ (identifying superfamily membership only)

    State of the art: refinement of multiple sequence alignments

    Get PDF
    BACKGROUND: Accurate multiple sequence alignments of proteins are very important in computational biology today. Despite the numerous efforts made in this field, all alignment strategies have certain shortcomings resulting in alignments that are not always correct. Refinement of existing alignment can prove to be an intelligent choice considering the increasing importance of high quality alignments in large scale high-throughput analysis. RESULTS: We provide an extensive comparison of the performance of the alignment refinement algorithms. The accuracy and efficiency of the refinement programs are compared using the 3D structure-based alignments in the BAliBASE benchmark database as well as manually curated high quality alignments from Conserved Domain Database (CDD). CONCLUSION: Comparison of performance for refined alignments revealed that despite the absence of dramatic improvements, our refinement method, REFINER, which uses conserved regions as constraints performs better in improving the alignments generated by different alignment algorithms. In most cases REFINER produces a higher-scoring, modestly improved alignment that does not deteriorate the well-conserved regions of the original alignment
    corecore