57,943 research outputs found

    Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network

    Full text link
    Methods based on convolutional neural network (CNN) have demonstrated tremendous improvements on single image super-resolution. However, the previous methods mainly restore images from one single area in the low resolution (LR) input, which limits the flexibility of models to infer various scales of details for high resolution (HR) output. Moreover, most of them train a specific model for each up-scale factor. In this paper, we propose a multi-scale super resolution (MSSR) network. Our network consists of multi-scale paths to make the HR inference, which can learn to synthesize features from different scales. This property helps reconstruct various kinds of regions in HR images. In addition, only one single model is needed for multiple up-scale factors, which is more efficient without loss of restoration quality. Experiments on four public datasets demonstrate that the proposed method achieved state-of-the-art performance with fast speed

    The structure of parafermion vertex operator algebras

    Get PDF
    It is proved that the parafermion vertex operator algebra associated to the irreducible highest weight module for the affine Kac-Moody algebra A_1^{(1)} of level k coincides with a certain W-algebra. In particular, a set of generators for the parafermion vertex operator algebra is determined.Comment: 12 page

    End-to-End Learning of Video Super-Resolution with Motion Compensation

    Full text link
    Learning approaches have shown great success in the task of super-resolving an image given a low resolution input. Video super-resolution aims for exploiting additionally the information from multiple images. Typically, the images are related via optical flow and consecutive image warping. In this paper, we provide an end-to-end video super-resolution network that, in contrast to previous works, includes the estimation of optical flow in the overall network architecture. We analyze the usage of optical flow for video super-resolution and find that common off-the-shelf image warping does not allow video super-resolution to benefit much from optical flow. We rather propose an operation for motion compensation that performs warping from low to high resolution directly. We show that with this network configuration, video super-resolution can benefit from optical flow and we obtain state-of-the-art results on the popular test sets. We also show that the processing of whole images rather than independent patches is responsible for a large increase in accuracy.Comment: Accepted to GCPR201

    A Dual Digital Signal Processor VME Board For Instrumentation And Control Applications

    Full text link
    A Dual Digital Signal Processing VME Board was developed for the Continuous Electron Beam Accelerator Facility (CEBAF) Beam Current Monitor (BCM) system at Jefferson Lab. It is a versatile general-purpose digital signal processing board using an open architecture, which allows for adaptation to various applications. The base design uses two independent Texas Instrument (TI) TMS320C6711, which are 900 MFLOPS floating-point digital signal processors (DSP). Applications that require a fixed point DSP can be implemented by replacing the baseline DSP with the pin-for-pin compatible TMS320C6211. The design can be manufactured with a reduced chip set without redesigning the printed circuit board. For example it can be implemented as a single-channel DSP with no analog I/O.Comment: 3 PDF page

    R-Mode Oscillations and Spindown of Young Rotating Magnetic Neutron Stars

    Get PDF
    Recent work has shown that a young, rapidly rotating neutron star loses angular momentum to gravitational waves generated by unstable r-mode oscillations. We study the spin evolution of a young, magnetic neutron star including both the effects of gravitational radiation and magnetic braking (modeled as magnetic dipole radiation). Our phenomenological description of nonlinear r-modes is similar to, but distinct from, that of Owen et al. (1998) in that our treatment is consistent with the principle of adiabatic invariance in the limit when direct driving and damping of the mode are absent. We show that, while magnetic braking tends to increase the r-mode amplitude by spinning down the neutron star, it nevertheless reduces the efficiency of gravitational wave emission from the star. For B >= 10^14 (\nus/300 Hz)^2 G, where \nus is the spin frequency, the spindown rate and the gravitational waveforms are significantly modified by the effect of magnetic braking. We also estimate the growth rate of the r-mode due to electromagnetic (fast magnetosonic) wave emission and due to Alfven wave emission in the neutron star magnetosphere. The Alfven wave driving of the r-mode becomes more important than the gravitational radiation driving when B >= 10^13 (\nus/150 Hz)^3 G; the electromagnetic wave driving of the r-mode is much weaker. Finally, we study the properties of local Rossby-Alfven waves inside the neutron star and show that the fractional change of the r-mode frequency due to the magnetic field is of order 0.5 (B/10^16 G)^2 (\nus/100 Hz)^-2.Comment: 18 pages, 4 figures; ApJ, accepted (v544: Nov 20, 2000); added two footnotes and more discussion of mode driving by Alfven wave

    Resonant Tidal Excitations of Inertial Modes in Coalescing Neutron Star Binaries

    Full text link
    We study the effect of resonant tidal excitation of inertial modes in neutron stars during binary inspiral. For spin frequencies less than 100 Hz, the phase shift in the gravitational waveform associated with the resonance is small and does not affect the matched filtering scheme for gravitational wave detection. For higher spin frequencies, the phase shift can become significant. Most of the resonances take place at orbital frequencies comparable to the spin frequency, and thus significant phase shift may occur only in the high-frequency band (hundreds of Hertz) of gravitational wave. The exception is a single odd-paity m=1m=1 mode, which can be resonantly excited for misaligned spin-orbit inclinations, and may occur in the low-frequency band (tens of Hertz) of gravitational wave and induce significant (>> 1 radian) phase shift.Comment: Minor changes. 6 pages. Phys. Rev. D. in press (volume 74, issue 2
    • …
    corecore