393 research outputs found
Spin symmetry in Dirac negative energy spectrum in density-dependent relativistic Hartree-Fock theory
The spin symmetry in the Dirac negative energy spectrum and its origin are
investigated for the first time within the density-dependent relativistic
Hartree-Fock (DDRHF) theory. Taking the nucleus O as an example, the
spin symmetry in the negative energy spectrum is found to be a good
approximation and the dominant components of the Dirac wave functions for the
spin doublets are nearly identical. In comparison with the relativistic Hartree
approximation where the origin of spin symmetry lies in the equality of the
scalar and vector potentials, in DDRHF the cancellation between the Hartree and
Fock terms is responsible for the better spin symmetry properties and
determines the subtle spin-orbit splitting. These conclusions hold even in the
case when significant deviations from the G-parity values of the
meson-antinucleon couplings occur.Comment: 13 pages, 7 figures, 1 table, accepted by Eur. Phys. J.
Development and validation of a high performance liquid chromatography-tandem mass spectrometry method for the absolute analysis of 17 alpha D-amino acids in cooked meals
In the nutrition field, there is a lack of understanding about the impact that dietary chiral composition may have on health, especially regarding cooked meals. Chiral amino acids (AAs) are naturally present in food and their proportion may vary quite a lot. Besides, the D-amino acids (D-AAs) are present in very low concentration compared to L-AAs, so very sensitive methods are required for their accurate quantitation. Moreover, some of them have been described as indicators of quality and different food processes. In this research, we propose a robust method for the absolute quantitation and enantiomeric ratio of 17 D-AAs in cooked meals. The AAs were extracted from 1 g of the homogenised meal with methanol, derivatised with (S)-N-(4-nitrophenoxycarbonyl) phenylalanine methoxyethyl ester ((S)-NIFE) and analysed by RP-LC-MS/MS. The separation was carried out with an Acquity BEH C18 (100 mm x 2.1 mm, 1.7 µm) column at 70 ºC, with 10 mmol/L ammonium bicarbonate in water as eluent A and acetonitrile as eluent B at a 0.3 mL/min flow rate in gradient elution. The MS operated in positive electrospray ionisation method in multiple reaction monitoring (MRM) mode. Isotopically labelled AAs were used as internal standards for the quantitation. The method was validated for 17 D-AAs in the cooked food samples in terms of specificity, linearity, precision, accuracy, matrix effect and stability. LLOQ are 2.0 ng/mL for most of them. Additionally, linearity was also studied for L-AAs. After optimization and validation, the method was applied to real breakfast, lunch and dinner samples of cooked meals (n = 18) that were part of a diet with a very high concordance with WHO dietary guidelines. Level of concentration of major and minor D-AAs have been described per total daily intake and within each of the three main meals. This method can be used for quality control purposes as well as to investigate the role of chiral composition in food and clinical outcomes
Solar-driven CO2 reduction catalysed by hybrid supramolecular photocathodes and enhanced by ionic liquids
Photoelectrochemical carbon dioxide reduction (CO2) at ambient temperature and pressure was performed using molecular chromophores and catalyst assemblies on CuGaO2-based electrodes in an ionic liquid (IL) organic solution, acting as a CO2 absorbent and electrolyte. A simple and versatile methodology based on the silanization of the CuGaO2 electrode followed by electropolymerization provided a series of molecular and supramolecular hybrid photocathodes for solar driven CO2 reduction. Focusing on the cathodic half reactions, the most promising conditions for the formation of CO2 reduction products were determined. The results revealed a beneficial effect of the ionic liquid on the conversion of CO2 to formic acid and suppression of the production of hydrogen. The potentiality of anchoring supramolecular complexes on semiconductor photoelectrocatalysts was demonstrated to boost both carrier transport and catalytic activity with a FEred of up to 81% compared with the obtained FEred of 52% using bare CuGaO2 with formate as the major product
Asymmetric nuclear matter in a Hartree-Fock approach to non-linear QHD
The Equation of State (EOS) for asymmetric nuclear matter is discussed
starting from a phenomenological hadronic field theory of Serot-Walecka type
including exchange terms. In a model with self interactions of the scalar
sigma-meson we show that the Fock terms naturally lead to isospin effects in
the nuclear EOS. These effects are quite large and dominate over the
contribution due to isovector mesons. We obtain a potential symmetry term of
"stiff" type, i.e. increasing with baryon density and an interesting behaviour
of neutron/proton effective masses of relevance for transport properties of
asymmetric dense matter.Comment: 12 pages (LATEX), 3 Postscript figures, revised versio
Orchestration of Network Services Across Multiple Operators: The 5G Exchange Prototype
Future 5G networks will rely on the coordinated
allocation of compute, storage, and networking resources in
order to meet the functional requirements of 5G services as well
as guaranteeing efficient usage of the network infrastructure.
However, the 5G service provisioning paradigm will also require
a unified infrastructure service market that integrates multiple
operators and technologies. The 5G Exchange (5GEx) project,
building heavily on the Software-Defined Network (SDN) and the
Network Function Virtualization (NFV) functionalities, tries to
overcome this market and technology fragmentation by
designing, implementing, and testing a multi-domain
orchestrator (MdO) prototype for fast and automated Network
Service (NS) provisioning over multiple-technologies and
spanning across multiple operators. This paper presents a first
implementation of the 5GEx MdO prototype obtained by
extending existing open source software tools at the disposal of
the 5GEx partners. The main functions of the 5GEx MdO
prototype are showcased by demonstrating how it is possible to
create and deploy NSs in the context of a Slice as a Service
(SlaaS) use-case, based on a multi-operator scenario. The 5GEx
MdO prototype performance is experimentally evaluated
running validation tests within the 5GEx sandbox. The overall
time required for the NS deployment has been evaluated
considering NSs deployed across two operators
Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: An architectural survey
Over the last couple of years, industry operators' associations issued requirements towards an end-to-end management and orchestration plane for 5G networks. Consequently, standard organisations started their activities in this domain. This article provides an analysis and an architectural survey of these initiatives and of the main requirements, proposes descriptions for the key concepts of domain, resource and service slicing, end-to-end orchestration and a reference architecture for the end-to-end orchestration plane. Then, a set of currently available or under development domain orchestration frameworks are mapped to this reference architecture. These frameworks, meant to provide coordination and automated management of cloud and networking resources, network functions and services, fulfil multi-domain (i.e. multi-technology and multi-operator) orchestration requirements, thus enabling the realisation of an end-to-end orchestration plane. Finally, based on the analysis of existing single-domain and multi-domain orchestration components and requirements, this paper presents a functional architecture for the end-to-end management and orchestration plane, paving the way to its full realisatio
Desing and Validation of a Light Inference System to Support Embedded Context Reasoning
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications—it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ‘Activity Monitor’ has been designed and implemented: a personal health-persuasive application that provides feedback on the user’s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user’s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.
- …