930 research outputs found
Anomalous tunneling conductances of a spin singlet \nu=2/3 edge states: Interplay of Zeeman splitting and Long Range Coulomb Interaction
The point contact tunneling conductance between edges of the spin singlet
quantum Hall states is studied both in the
quasiparticle tunneling picture and in the electron tunneling picture. Due to
the interplay of Zeeman splitting and the long range Coulomb interaction
between edges of opposite chirality novel spin excitations emerge, and their
effect is characterized by anomalous exponents of the charge and spin tunneling
conductances in various temperature ranges. Depending on the kinds of
scatterings at the point contact and the tunneling mechanism the anomalous
interaction in spin sector may enhance or suppress the tunneling conductances.
The effects of novel spin excitation are also relevant to the recent NMR
experiments on quantum Hall edges.Comment: Revtex File, 7 pages: To be published in Physical Reviews
Remarkable morphological characteristics of Milnesium sp. from Inhovde, East Antarctica
第6回極域科学シンポジウム[OB] 極域生物圏11月16日(月) 国立極地研究所1階交流アトリウ
A Conjugate Study of Mean Winds and Planetary Waves Employing Enhanced Meteor Radars at Rio Grande, Argentina (53.8degS) and Juliusruh, Germany (54.6degN)
Two meteor radars with enhanced power and sensitivity and located at closely conjugate latitudes (54.6degN and 53.8degS) are employed for inter-hemispheric comparisons of mean winds and planetary wave structures. Our study uses data from June 2008 through May 2010 during which both radars provided nearly continuous wind measurements from approx.80 to 100 km. Monthly mean winds at 53.8degS exhibit a somewhat stronger westward mean zonal jet in spring and early summer at lower altitudes and no westward monthly mean winds at higher altitudes. In contrast, westward mean winds of approx.5-10 m/s at 54.6degN extend to above 96 km during late winter and early spring each year. Equatorward monthly mean winds extend approximately from spring to fall equinox at both latitudes, with amplitudes of approx.5-10 m/s and more rapid decreases in amplitude at 54.6degN at higher altitudes. Meridional mean winds are more variable at both latitudes during fall and winter, with both poleward and equatorward monthly means indicating longer-period variability. Planetary waves seen in the 2-day mean data are episodic and variable at both sites, exhibit dominant periodicities of approx.8-10 and 16-20 days and are more confined to late fall and winter at 54.6degN. At both latitudes, planetary waves in the two period bands coincide closely in time and exhibit similar horizontal velocity covariances that are positive (negative) at 54.6degN (53.8degS) during peak planetary wave responses
Strong quasi-particle tunneling study in the paired quantum Hall states
The quasi-particle tunneling phenomena in the paired fractional quantum Hall
states are studied. A single point-contact system is first considered. Because
of relevancy of the quasi-particle tunneling term, the strong tunneling regime
should be investigated.
Using the instanton method it is shown that the strong quasi-particle
tunneling regime is described as the weak electron tunneling regime
effectively.
Expanding to the network model the paired quantum Hall liquid to insulator
transition is discussed
Disorder-Induced Multiple Transition involving Z2 Topological Insulator
Effects of disorder on two-dimensional Z2 topological insulator are studied
numerically by the transfer matrix method. Based on the scaling analysis, the
phase diagram is derived for a model of HgTe quantum well as a function of
disorder strength and magnitude of the energy gap. In the presence of sz
non-conserving spin-orbit coupling, a finite metallic region is found that
partitions the two topologically distinct insulating phases. As disorder
increases, a narrow-gap topologically trivial insulator undergoes a series of
transitions; first to metal, second to topological insulator, third to metal,
and finally back to trivial insulator. We show that this multiple transition is
a consequence of two disorder effects; renormalization of the band gap, and
Anderson localization. The metallic region found in the scaling analysis
corresponds roughly to the region of finite density of states at the Fermi
level evaluated in the self-consistent Born approximation.Comment: 5 pages, 5 figure
Theory of suppressed shot-noise at
We study the edge states of fractional quantum Hall liquid at bulk filling
factor with being an even integer and . We
describe the transition from a conductance plateau to
another plateau in terms of chiral Tomonaga-Luttinger liquid
theory. It is found that the fractional charge which appears in the
classical shot-noise formula is on the
conductance plateau at whereas on the plateau at
it is given by . For and an alternative hierarchy
constructions is also discussed to explain the suppressed shot-noise experiment
at bulk filling factor .Comment: Typos in Eqs. (5-7) correcte
Photo--assisted current and shot noise in the fractional quantum Hall effect
The effect of an AC perturbation on the shot noise of a fractional quantum
Hall fluid is studied both in the weak and the strong backscattering regimes.
It is known that the zero-frequency current is linear in the bias voltage,
while the noise derivative exhibits steps as a function of bias. In contrast,
at Laughlin fractions, the backscattering current and the backscattering noise
both exhibit evenly spaced singularities, which are reminiscent of the
tunneling density of states singularities for quasiparticles. The spacing is
determined by the quasiparticle charge and the ratio of the DC bias
with respect to the drive frequency. Photo--assisted transport can thus be
considered as a probe for effective charges at such filling factors, and could
be used in the study of more complicated fractions of the Hall effect. A
non-perturbative method for studying photo--assisted transport at is
developed, using a refermionization procedure.Comment: 14 pages, 6 figure
The edge state network model and the global phase diagram
The effects of randomness are investigated in the fractional quantum Hall
systems. Based on the Chern-Simons Ginzburg-Landou theory and considering
relevant quasi-particle tunneling, the edge state network model for the
hierarchical state is introduced and the plateau-plateau transition and
liquid-insulator transition are discussed. This model has duality which
corresponds to the relation of the quantum Hall liquid phase and the Hall
insulating phase and reveals a mechanism in the weak coupling regime.Comment: 5 page RevTe
Hydrodynamics of domain growth in nematic liquid crystals
We study the growth of aligned domains in nematic liquid crystals. Results
are obtained solving the Beris-Edwards equations of motion using the lattice
Boltzmann approach. Spatial anisotropy in the domain growth is shown to be a
consequence of the flow induced by the changing order parameter field
(backflow). The generalization of the results to the growth of a cylindrical
domain, which involves the dynamics of a defect ring, is discussed.Comment: 12 revtex-style pages, including 12 figures; small changes before
publicatio
- …