9,676 research outputs found
Mott-Hubbard quantum criticality in paramagnetic CMR pyrochlores
We present a correlated {\it ab initio} description of the paramagnetic phase
of TlMnO, employing a combined local density approximation (LDA)
with multiorbital dynamical mean field theory (DMFT) treatment. We show that
the insulating state observed in this colossal magnetoresistance (CMR)
pyrochlore is determined by strong Mn intra- and inter-orbital local
electron-electron interactions. Hybridization effects are reinforced by the
correlation-induced spectral weight transfer. Our result coincides with optical
conductivity measurements, whose low energy features are remarkably accounted
for by our theory. Based on this agreement, we study the disorder-driven
insulator-metal transition of doped compounds, showing the proximity of
TlMnO to quantum phase transitions, in agreement with recent
measurements.Comment: 4 pages, 4 figure
Modeling lithium rich carbon stars in the Large Magellanic Cloud: an independent distance indicator ?
We present the first quantitative results explaining the presence in the
Large Magellanic Cloud of some asymptotic giant branch stars that share the
properties of lithium rich carbon stars. A self-consistent description of
time-dependent mixing, overshooting, and nuclear burning was required. We
identify a narrow range of masses and luminosities for this peculiar stars.
Comparison of these models with the luminosities of the few Li-rich C stars in
the Large Magellanic Cloud provides an independent distance indicator for the
LMCComment: 7 pages, 2 figure
Normal state magnetotransport properties of -FeSe superconductors
We present -FeSe magnetotransport data, and describe them
theoretically. Using a simplified microscopic model with two correlated
effective orbitals, we determined the normal state electrical conductivity and
Hall coefficient, using Kubo formalism. With model parameters relevant for
Fe-chalcogenides, we describe the observed effect of the structural transition
on the ab-plane electrical resistivity, as well as on the magnetoresistance.
Temperature-dependent Hall coefficient data were measured at 16 Tesla, and
their theoretical description improves upon inclusion of moderate electron
correlations. We confirm the effect of the structural transition on the
electronic structure, finding deformation-induced band splittings comparable to
those reported in angle-resolved photoemission.Comment: 6 pages, 5 figure
The two gap transitions in GeSn: effect of non-substitutional complex defects
The existence of non-substitutional -Sn defects in GeSn
was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B
81, 155204 (2010)], which established that although most Sn enters
substitutionally (-Sn) in the Ge lattice, a second significant fraction
corresponds to the Sn-vacancy defect complex in the split-vacancy configuration
( -Sn ), in agreement with our previous theoretical study [Ventura et
al., Phys. Rev. B 79, 155202 (2009)]. Here, we present our electronic structure
calculation for GeSn, including substitutional -Sn as
well as non-substitutional -Sn defects. To include the presence of
non-substitutional complex defects in the electronic structure calculation for
this multi-orbital alloy problem, we extended the approach for the purely
substitutional alloy by Jenkins and Dow [Jenkins and Dow, Phys. Rev. B 36, 7994
(1987)]. We employed an effective substitutional two-site cluster equivalent to
the real non-substitutional -Sn defect, which was determined by a
Green's functions calculation. We then calculated the electronic structure of
the effective alloy purely in terms of substitutional defects, embedding the
effective substitutional clusters in the lattice. Our results describe the two
transitions of the fundamental gap of GeSn as a function of the
total Sn-concentration: namely from an indirect to a direct gap, first, and the
metallization transition at higher . They also highlight the role of
-Sn in the reduction of the concentration range which corresponds to the
direct-gap phase of this alloy, of interest for optoelectronics applications.Comment: 11 pages, 9 Figure
Temperature and doping dependence of normal state spectral properties in a two-orbital model for ferropnictides
Using a second-order perturbative Green's functions approach we determined
the normal state single-particle spectral function
employing a minimal effective model for iron-based superconductors. The
microscopic model, used before to study magnetic fluctuations and
superconducting properties, includes the two effective tight-binding bands
proposed by S.Raghu et al. [Phys. Rev. B 77, 220503 (R) (2008)], and intra- and
inter-orbital local electronic correlations, related to the Fe-3d orbitals.
Here, we focus on the study of normal state electronic properties, in
particular the temperature and doping dependence of the total density of
states, , and of in different Brillouin zone
regions, and compare them to the existing angle resolved photoemission
spectroscopy (ARPES) and previous theoretical results in ferropnictides. We
obtain an asymmetric effect of electron and hole doping, quantitative agreement
with the experimental chemical potential shifts as a function of doping, as
well as spectral weight redistributions near the Fermi level as a function of
temperature consistent with the available experimental data. In addition, we
predict a non-trivial dependence of the total density of states with the
temperature, exhibiting clear renormalization effects by correlations.
Interestingly, investigating the origin of this predicted behaviour by
analyzing the evolution with temperature of the k-dependent self-energy
obtained in our approach, we could identify a number of specific Brillouin zone
points, none of them probed by ARPES experiments yet, where the largest
non-trivial effects of temperature on the renormalization are present.Comment: Manuscript accepted in Physics Letters A on Feb. 25, 201
- …