43,388 research outputs found

    A strong law of large numbers for branching processes: almost sure spine events

    Get PDF
    We demonstrate a novel strong law of large numbers for branching processes, with a simple proof via measure-theoretic manipulations and spine theory. Roughly speaking, any sequence of events that eventually occurs almost surely for the spine entails the almost sure convergence of a certain sum over particles in the population.Comment: 6 page

    Growth rates of the population in a branching Brownian motion with an inhomogeneous breeding potential

    Get PDF
    We consider a branching particle system where each particle moves as an independent Brownian motion and breeds at a rate proportional to its distance from the origin raised to the power pp, for p[0,2)p\in[0,2). The asymptotic behaviour of the right-most particle for this system is already known; in this article we give large deviations probabilities for particles following "difficult" paths, growth rates along "easy" paths, the total population growth rate, and we derive the optimal paths which particles must follow to achieve this growth rate.Comment: 56 pages, 1 figur

    The Globular Cluster Systems in the Coma Ellipticals. III: The Unique Case of IC 4051

    Full text link
    Using archival \hst WFPC2 data, we derive the metallicity distribution, luminosity function, and spatial structure of the globular cluster system around IC 4051, a giant E galaxy on the outskirts of the Coma cluster core. The metallicity distribution derived from the (V-I) colors has a mean [Fe/H] = -0.3, a near-complete lack of metal-poor clusters, and only a small metallicity gradient with radius; it may, however, have two roughly equal metallicity subcomponents, centered at [Fe/H] ~ 0.0 and -1.0. The luminosity distribution (GCLF) has the Gaussian-like form observed in all other giant E galaxies, with a peak (turnover) at V = 27.8, consistent with a Coma distance of 100 Mpc. The radial profiles of both the GCS and the halo light show an unusually steep falloff which may indicate that the halo of this galaxy has been tidally truncated. Lastly, the specific frequency of the GCS is remarkably large: we find S_N = 11 +- 2, resembling the central cD-type galaxies even though IC 4051 is not a cD or brightest cluster elliptical. A formation model consistent with most of the observations would be that this galaxy was subjected to removal of a large fraction of its protogalactic gas shortly after its main phase of globular cluster formation, probably by its first passage through the Coma core. Since then, no significant additions due to accretions or mergers have taken place.Comment: 24 pp. plus 13 Figures. Postscript file for the complete paper can also be downloaded from http://www.physun.mcmaster.ca/~harris/WEHarris.html. Astron.J., in pres

    Impact hazard protection efficiency by a small kinetic impactor

    Get PDF
    In this paper the ability of a small kinetic impactor spacecraft to mitigate an Earth-threatening asteroid is assessed by means of a novel measure of efficiency. This measure estimates the probability of a space system to deflect a single randomly-generated Earth-impacting object to a safe distance from the Earth. This represents a measure of efficiency that is not biased by the orbital parameters of a test-case object. A vast number of virtual Earth-impacting scenarios are investigated by homogenously distributing in orbital space a grid of 17,518 Earth impacting trajectories. The relative frequency of each trajectory is estimated by means Opik’s theory and Bottke’s near Earth objects model. A design of the entire mitigation mission is performed and the largest deflected asteroid computed for each impacting trajectory. The minimum detectable asteroid can also be estimated by an asteroid survey model. The results show that current technology would likely suffice against discovered airburst and local damage threats, whereas larger space systems would be necessary to reliably tackle impact hazard from larger threats. For example, it is shown that only 1,000 kg kinetic impactor would suffice to mitigate the impact threat of 27.1% of objects posing similar threat than that posed by Apophis

    On a random walk with memory and its relation to Markovian processes

    Full text link
    We study a one-dimensional random walk with memory in which the step lengths to the left and to the right evolve at each step in order to reduce the wandering of the walker. The feedback is quite efficient and lead to a non-diffusive walk. The time evolution of the displacement is given by an equivalent Markovian dynamical process. The probability density for the position of the walker is the same at any time as for a random walk with shrinking steps, although the two-time correlation functions are quite different.Comment: 10 pages, 4 figure

    Laser cooling and control of excitations in superfluid helium

    Full text link
    Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. However measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.Comment: 6 pages, 4 figures. Supplementary information attache

    Minimum requirements for feedback enhanced force sensing

    Full text link
    The problem of estimating an unknown force driving a linear oscillator is revisited. When using linear measurement, feedback is often cited as a mechanism to enhance bandwidth or sensitivity. We show that as long as the oscillator dynamics are known, there exists a real-time estimation strategy that reproduces the same measurement record as any arbitrary feedback protocol. Consequently some form of nonlinearity is required to gain any advantage beyond estimation alone. This result holds true in both quantum and classical systems, with non-stationary forces and feedback, and in the general case of non-Gaussian and correlated noise. Recently, feedback enhanced incoherent force sensing has been demonstrated [Nat. Nano. \textbf{7}, 509 (2012)], with the enhancement attributed to a feedback induced modification of the mechanical susceptibility. As a proof-of-principle we experimentally reproduce this result through straightforward filtering.Comment: 5 pages + 2 pages of Supplementary Informatio
    corecore