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Abstract

We demonstrate a novel strong law of large numbers for branching processes, with a
simple proof via measure-theoretic manipulations and spine theory. Roughly speak-
ing, any sequence of events that eventually occurs almost surely for the spine entails
the almost sure convergence of a certain sum over particles in the population.
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1 Introduction

We shall work with a fairly general Markov branching process. To define this pro-
cess, we suppose that we are given three ingredients:

• A Markov process ψt, t ≥ 0, in a measurable space (J,B);

• A measurable function R : J → [0,∞);

• A collection of random variables A(x), x ∈ J taking values in {0, 1, 2, . . .}, such that
M(x) := E[A(x)]− 1 <∞.

Our branching process is then defined, under a probability measure P, as follows: we
begin with one particle. This particle moves around in J like a copy of the process ψt.
When at position x, it dies at rate R(x), that is, if ∅ is our original particle, X∅(t) is its
position at time t and τ∅ is its time of death, then

P(τ∅ > t | X∅(s), s ≤ t) = exp

(
−
∫ t

0

R(X∅(s))ds

)
.

At its time of death, it is replaced in its position x by a random number of children,
the number being specified by a copy of A(x). These children then each independently
show the same stochastic behaviour as their parent, moving around like independent
copies of ψt and branching at rate R(x) when at position x into a random number of
particles that is an independent copy of A(x). We let N(t) be the set of all particles that
are alive at time t; if v ∈ N(t) then we let Xv(t) be the position of particle v at time t;
and we let Av be the number of children of particle v.
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SLLN for branching processes: a.s. spine events

We let Ft, t ≥ 0 be the natural filtration of this process. We now extend our prob-
ability measure P to a new probability measure P̃ on a bigger space by choosing one
special line of descent which we call the spine as follows. The initial particle is part
of the spine, and when a spine particle dies the new spine particle is chosen uniformly
from amongst its children. We let the natural filtration of the new process, in which
there is a branching process with one marked line of descent, be F̃t, t ≥ 0. Let spine(t)

be the spine particle at time t, and ξt be its position; let S(t) be the set of particles that
have been in the spine up to time t, S(t) = {spine(s) : s ≤ t}.

For details of all of the above, see [1] or Chapter 2 of [3].
Note that if X is an F̃t-measurable random variable, then there exist Ft-measurable

random variables such that we may write

X =
∑

v∈N(t)

Xv1{spine(t)=v}.

The reason for this representation is essentially that if X is F̃t-measurable, then X =

X(spine(t), {Xu(s), u ∈ N(t), s ≤ t}) and we can choose Xv = X(v, {Xu(s), u ∈ N(t), s ≤
t}). This can be made rigorous: see page 24 of [3].

Suppose that ζ(t) is a non-negative martingale with respect to the filtration Gt :=

σ(ξs, s ≤ t), such that Ẽ[ζ(t)] = 1. We may write

ζ(t) =
∑

v∈N(t)

ζv(t)1{spine(t)=v}

where each ζv(t) is an Ft-measurable random variable. Then

ζ̃(t) := e−
∫ t
0
M(ξs)R(ξs)dsζ(t)

∏
v∈S(t)

(1 +Av)

is a martingale with respect to F̃t (see Theorem 2.4 of [3]). We define a new measure Q̃
by setting

dQ̃

dP̃

∣∣∣∣∣
F̃t

:= ζ̃(t).

The measure Q̃ has a nice description in terms of the spine, although this will not be
used in this article. Briefly, the motion of the spine is biased by the martingale ζ(t);
branching events along the spine occur at an accelerated rate (1 + M(ξt))R(ξt) when
the spine is at position ξt; and the number of children of the spine is size-biased. All
other (non-spine) particles, once born, remain unaffected.

We also let Q := Q̃|Ft be a measure on Ft, the natural filtration of the original
branching process. Then

dQ

dP

∣∣∣∣
Ft

=
∑

v∈N(t)

e−
∫ t
0
M(Xv(s))R(Xv(s))dsζv(t) =: Z(t)

and Z(t) is a P-martingale with respect to Ft (again see Theorem 2.4 of [3] for details).
Since Z(t) is a positive martingale, it converges P-almost surely to Z(∞) := lim inf Z(t).

We now state our main result. Suppose that f(t) is F̃t-measurable for each t. Then,
again, we may write each f(t) via the representation

f(t) =
∑
u∈Nt

fu(t)1{spine(t)=u}

where fu(t) is Ft-measurable for each t ≥ 0 and each u ∈ N(t).
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SLLN for branching processes: a.s. spine events

Theorem 1.1. Suppose that {f(t) : t ≥ 0} is Q̃-uniformly integrable. If f(t) → f Q̃-
almost surely as t→∞ then

∑
u∈Nt

fu(t)
e−

∫ t
0
M(Xu(s))R(Xu(s))dsζu(t)

Z(t)
→ Q̃[f |F∞] (?)

Q-almost surely. Furthermore, P
(
(?)
∣∣Z(∞) > 0

)
= 1.

Remark 1.2. 1. Note that

e−
∫ t
0
M(Xu(s))R(Xu(s))dsζu(t)

Z(t)
= Q̃(spine(t) = u|Ft).

2. Since 1/Z(t) is a positive Q-supermartingale (and thus converges almost surely to
an almost surely finite limit), Z(t) → Z(∞) Q-almost surely. Thus we may deduce
from (?) that∑

u∈Nt

fu(t)e−
∫ t
0
M(Xu(s))R(Xu(s))dsζu(t)→ Q̃[f |F∞]Z(∞) Q-almost surely.

In fact under fairly mild conditions on the branching distributions A(x), we have
Q(Z(∞) < ∞) = 1, in which case we do not lose anything by rewriting (?) in this
way.

3. In many cases of interest the events {Z(∞) = 0} and {∃t ∈ [0,∞) : Z(t) = 0} agree
to within a set of zero P-probability. Then, of course,∑

u∈Nt

fu(t)e−
∫ t
0
M(Xu(s))R(Xu(s))dsζu(t)→ Q̃[f |F∞]Z(∞) P-almost surely.

2 Some example applications

We outline here two examples showing how our strong law can be applied. The first
example is folklore in branching processes, but we are not aware of another proof.

In branching processes branching at rate β into on average m offspring, most
particles branch at rate mβ.
Take a continuous-time branching process with constant birth rate R(x) ≡ β and birth
distribution A(x) ≡ A satisfying E[A log+A] < ∞ with m := E[A]. Let ζ(t) ≡ 1. For
any ε > 0 we may take f(t) = 1{|nt/t−mβ|<ε}, the indicator that birth rate along the

spine up to time t is close to its expected value under Q̃, mβ. Then for any ε > 0, f(t)

converges Q̃-almost surely to 1. Thus Theorem 1.1, together with some classical results
on branching processes concerning the martingale e−(m−1)βt|N(t)|, tells us that on the
event that the process survives,

1

|N(t)|
∑

u∈N(t)

fu(t)→ 1 P-almost surely.

This may be interpreted as saying that if we choose a particle uniformly at random from
those alive at a large time t, and look at its history, we are likely to see that its average
birth rate has been approximately mβ. In particular, with binary branching, we see an
average birth rate of 2β in typical particles (rather than β, which one might naively
expect).

Our second example shows how the spatial behaviour of the spine can also be passed
to other particles: if the spine shows ergodic behaviour, then so do many other particles.
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Occupation densities and ergodic spines.
Suppose that the motion of the spine (ξt, t ≥ 0) is ergodic under Q̃ with invariant prob-
ability density π in the sense that there exists some suitable class of functions H such
that for any h ∈ H,

1

t

∫ t

0

h(ξs)ds→ Lh :=

∫
R

h(x)π(x)dx Q̃-almost surely.

Then for any continuous function g : R→ R and any h ∈ H,

1

Z(t)

∑
u∈N(t)

g

(
1

t

∫ t

0

h(Xu(s))ds

)
e−

∫ t
0
M(Xu(s))R(Xu(s))dsζu(t)→ g(Lh)

Q-almost surely. The same holds underP on the event Z(∞) > 0, which is one exposition
of the general principle that if forcing the spine to show certain behaviour does not
cause the corresponding martingale to disappear, then that behaviour appears in the
original process.

Particles within a tube.
To give a more explicit example using the same idea as above, we consider a standard
branching Brownian motion in which all particles breed at rate 1 into two new particles.
That is, ψt is a Brownian motion, R ≡ 1 and A ≡ 2 so M ≡ 1. We begin with one particle
at x ∈ (0, L), and we are interested in particles that remain between 0 and L. Introduce
the martingale

ζ(t) = aeπ
2t/2L2

sin

(
πξt
L

)
1{ξs∈(0,L) ∀s≤t}

where a = 1/ sin(πx/L), which gives

Z(t) = a
∑

u∈N(t)

e−t+π
2t/2L2

sin

(
πXu(t)

L

)
1{Xu(s)∈(0,L) ∀s≤t}.

The invariant density of the motion of the spine under Q̃ is 2
L sin2(πy/L), y ∈ (0, L), so

for any Borel set A and any ε > 0,

1{| 1t
∫ t
0
1{ξs∈A}ds− 2

L

∫
A

sin2(πy/L)dy|<ε} → 1 Q̃− almost surely.

Thus, setting

ζu(t) = aeπ
2t/2L2

sin

(
πXu(t)

L

)
1{Xu(s)∈(0,L) ∀s≤t}

we have that

1

Z(t)

∑
u∈N(t)

e−tζu(t)1{| 1t
∫ t
0
1{Xu(s)∈A}ds− 2

L

∫
A

sin2(πy/L)dy|<ε} → 1

Q-almost surely and, when L > π/
√

2, P-almost surely. This result was applied to prove
Lemma 5 of [2] — see also [2] for a proof that Z(∞) > 0 when L > π/

√
2.

3 Measure theoretic results

To prove Theorem 1.1 we need some simple measure theory. For this section we
forget the branching setup and take any filtered probability space (Ω,F ,Ft, P ) and
define F∞ :=

∨
t≥0 Ft. Suppose that Xt, t ≥ 0 is an F -measurable process such that

(E[Xt|Ft], t ≥ 0) is almost surely càdlàg.
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Proposition 3.1. If

E[Xt|F∞]→ Y almost surely,

then

E[Xt|Ft]→ Y almost surely.

Proof. Fix ε > 0. We show that there exists an almost surely finite random variable T
such that

sup
t≥T

E[Xt|Ft] ≤ Y + ε almost surely.

By the càdlàg property, it is sufficient to take the supremum above over rationals
greater than T ; from now on all our suprema will be over rationals.

Since E[Xt|F∞] → Y , there exists an almost surely finite random variable T1 such
that

sup
t≥T1

E[Xt|F∞] < Y + ε/2 almost surely,

and since (by the fact that it is a closed martingale) E[Y |Ft] → E[Y |F∞] = Y (Y is
F∞-measurable since it is the limit of F∞-measurable random variables), there exists
an almost surely finite random variable T2 such that

sup
t≥T2

E[Y |Ft] < Y + ε/2 almost surely.

Let T = T1 ∨ T2. Then

sup
t≥T

E[Xt|Ft] ≤ sup
t≥T2

sup
s≥T1

E[Xs|Ft]

= sup
t≥T2

sup
s≥T1

E[E[Xs|F∞]|Ft]

≤ sup
t≥T2

E

[
sup
s≥T1

E[Xs|F∞]

∣∣∣∣Ft]
≤ sup

t≥T2

E[Y + ε/2|Ft]

≤ Y + ε

(all statements hold almost surely). Thus lim supE[Xt|Ft] ≤ Y ; the proof that lim inf E[Xt|Ft] ≥
Y is similar.

Corollary 3.2. Suppose that the collection of random variables {Xt, t ≥ 0} is uniformly
integrable. If

Xt → X almost surely

then

E[Xt|Ft]→ E[X|F∞] almost surely.

Proof. Let Y = E[X|F∞]; then by uniform integrability,

E[Xt|F∞]→ Y almost surely.

Proposition 1 now gives the result.
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4 The proof of Theorem 1.1

We now return to the notation from Section 1.

Proof of Theorem 1.1. We recall Theorem 8.2 of Hardy and Harris [1], which says that
under the conditions above,

Q̃[f(t)|Ft] =
∑
u∈Nt

fu(t)
e−

∫ t
0
M(Xu(s))R(Xu(s))dsζu(t)

Z(t)
.

Now if f(t) converges Q̃-almost surely to f then by Corollary 3.2 we have

Q̃[f(t)|Ft]→ Q̃[f |F∞] Q̃-almost surely

and hence ∑
u∈Nt

fu(t)
e−

∫ t
0
M(Xu(s))R(Xu(s))dsζu(t)

Z(t)
→ Q̃[f |F∞] Q̃-almost surely.

Finally, for any (F∞-measurable) event A such that Q(A) = 1,

P(A|Z(∞) > 0) =
P(A ∩ {Z(∞) > 0})
P(Z(∞) > 0)

=
Q
[

1
Z(∞)1A∩{Z(∞)>0}

]
P(Z(∞) > 0)

=
Q
[

1
Z(∞)1{Z(∞)>0}

]
P(Z(∞) > 0)

= 1.

References

[1] R. Hardy and S. C. Harris. A spine approach to branching diffusions with applications to
Lp-convergence of martingales. In Séminaire de Probabilités, XLII, volume 1979 of Lecture
Notes in Math. Springer, Berlin, 2009. MR-2599214

[2] S.C. Harris, M. Hesse, and A.E. Kyprianou. Branching brownian motion in a strip: survival
near criticality. 2012. Preprint: arXiv:1212.1444v1

[3] M.I. Roberts. Spine changes of measure and branching diffusions. PhD thesis, University of
Bath, 2010. Available online: http://people.bath.ac.uk/mir20/thesis.pdf

ECP 19 (2014), paper 28.
Page 6/6

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2599214
http://arXiv.org/abs/1212.1444v1
http://people.bath.ac.uk/mir20/thesis.pdf
http://dx.doi.org/10.1214/ECP.v19-2641
http://ecp.ejpecp.org/

	Introduction
	Some example applications
	Measure theoretic results
	The proof of Theorem 1.1
	References

