1,857 research outputs found

    Criterion for universality class independent critical fluctuations: example of the 2D Ising model

    Get PDF
    Order parameter fluctuations for the two dimensional Ising model in the region of the critical temperature are presented. A locus of temperatures T*(L) and of magnetic fields B*(L) are identified, for which the probability density function is similar to that for the 2D-XY model in the spin wave approximation.The characteristics of the fluctuations along these points are largely independent of universality class. We show that the largest range of fluctuations relative to the variance of the distribution occurs along these loci of points, rather than at the critical temperature itself and we discuss this observation in terms of intermittency. Our motivation is the identification of a generic form for fluctuations in correlated systems in accordance with recent experimental and numerical observations. We conclude that a universality class dependent form for the fluctuations is a particularity of critical phenomena related to the change in symmetry at a phase transition.Comment: to appear in Phys. Rev.

    Intermittency and non-Gaussian fluctuations of the global energy transfer in fully developed turbulence

    Full text link
    We address the experimentally observed non-Gaussian fluctuations for the energy injected into a closed turbulent flow at fixed Reynolds number. We propose that the power fluctuations mirror the internal kinetic energy fluctuations. Using a stochastic cascade model, we construct the excess kinetic energy as the sum over the energy transfers at different levels of the cascade. We find an asymmetric distribution that strongly resembles the experimental data. The asymmetry is an explicit consequence of intermittency and the global measure is dominated by small scale events correlated over the entire system. Our calculation is consistent with the statistical analogy recently made between a confined turbulent flow and a critical system of finite size.Comment: To appear in Physical Review Letter

    Nature of finite-temperature transition in anisotropic pyrochlore Er2Ti2O7

    Full text link
    We study the finite-temperature transition in a model XY antiferromagnet on a pyrochlore lattice, which describes the pyrochlore material Er2Ti2O7. The ordered magnetic structure selected by thermal fluctuations is six-fold degenerate. Nevertheless, our classical Monte Carlo simulations show that the critical behavior corresponds to the three-dimensional XY universality class. We determine an additional critical exponent nu_6=0.75>nu characteristic of a dangerously irrelevant scaling variable. Persistent thermal fluctuations in the ordered phase are revealed in Monte Carlo simulations by the peculiar coexistence of Bragg peaks and diffuse magnetic scattering, the feature also observed in neutron diffraction experiments.Comment: 5+5 pages (including supplemental material

    An electric-field representation of the harmonic XY model

    Get PDF
    The two-dimensional harmonic XY (HXY) model is a spin model in which the classical spins interact via a piecewise parabolic potential. We argue that the HXY model should be regarded as the canonical classical lattice spin model of phase fluctuations in two-dimensional condensates, as it is the simplest model that guarantees the modular symmetry of the experimental systems. Here we formulate a lattice electric-field representation of the HXY model and contrast this with an analogous representation of the Villain model and the two-dimensional Coulomb gas with a purely rotational auxiliary field. We find that the HXY model is a spin-model analogue of a lattice electric-field model of the Coulomb gas with an auxiliary field, but with a temperature-dependent vacuum (electric) permittivity that encodes the coupling of the spin vortices to their background spin-wave medium. The spin vortices map to the Coulomb charges, while the spin-wave fluctuations correspond to auxiliary-field fluctuations. The coupling explains the striking differences in the high-temperature asymptotes of the specific heats of the HXY model and the Coulomb gas with an auxiliary field. Our results elucidate the propagation of effective long-range interactions throughout the HXY model (whose interactions are purely local) by the lattice electric fields. They also imply that global spin-twist excitations (topological-sector fluctuations) generated by local spin dynamics are ergodically excluded in the low-temperature phase. We discuss the relevance of these results to condensate physics.Comment: 13 pages, 10 figure

    Topological-sector fluctuations and ergodicity breaking at the Berezinskii-Kosterlitz-Thouless transition

    Get PDF
    The Berezinskii-Kosterlitz-Thouless (BKT) phase transition drives the unbinding of topological defects in many two-dimensional systems. In the two-dimensional Coulomb gas, it corresponds to an insulator-conductor transition driven by charge deconfinement. We investigate the global topological properties of this transition, both analytically and by numerical simulation, using a lattice-field description of the two-dimensional Coulomb gas on a torus. The BKT transition is shown to be an ergodicity breaking between the topological sectors of the electric field, which implies a definition of topological order in terms of broken ergodicity. The breakdown of local topological order at the BKT transition leads to the excitation of global topological defects in the electric field, corresponding to different topological sectors. The quantized nature of these classical excitations, and their strict suppression by ergodicity breaking in the low-temperature phase, afford striking global signatures of topological-sector fluctuations at the BKT transition. We discuss how these signatures could be detected in experiments on, for example, magnetic films and cold-atom systems.Comment: 11 pages, 6 figure

    Crystal Shape-Dependent Magnetic Susceptibility and Curie Law Crossover in the Spin Ices Dy2Ti2O7 and Ho2Ti2O7

    Full text link
    We present an experimental determination of the isothermal magnetic susceptibility of the spin ice materials Dy2Ti2O7 and Ho2Ti2O7 in the temperature range 1.8-300 K. The use of spherical crystals has allowed the accurate correction for demagnetizing fields and allowed the true bulk isothermal susceptibility X_T(T) to be estimated. This has been compared to a theoretical expression based on a Husimi tree approximation to the spin ice model. Agreement between experiment and theory is excellent at T > 10 K, but systematic deviations occur below that temperature. Our results largely resolve an apparent disagreement between neutron scattering and bulk measurements that has been previously noted. They also show that the use of non-spherical crystals in magnetization studies of spin ice may introduce very significant systematic errors, although we note some interesting - and possibly new - systematics concerning the demagnetizing factor in cuboidal samples. Finally, our results show how experimental susceptibility measurements on spin ices may be used to extract the characteristic energy scale of the system and the corresponding chemical potential for emergent magnetic monopoles.Comment: 11 pages, 3 figures 1 table. Manuscript submitte
    corecore