1,370 research outputs found
The Angular Resolution of Space-Based Gravitational Wave Detectors
Proposed space-based gravitational wave antennas involve satellites arrayed
either in an equilateral triangle around the earth in the ecliptic plane (the
ecliptic-plane option) or in an equilateral triangle orbiting the sun in such a
way that the plane of the triangle is tilted at 60 degrees relative to the
ecliptic (the precessing-plane option). In this paper, we explore the angular
resolution of these two classes of detectors for two kinds of sources
(essentially monochromatic compact binaries and coalescing massive-black-hole
binaries) using time-domain expressions for the gravitational waveform that are
accurate to 4/2 PN order. Our results display an interesting effect not
previously reported in the literature, and underline the importance of
including the higher-order PN terms in the waveform when predicting the angular
resolution of ecliptic-plane detector arrays.Comment: 13 pages, 6 figures, submitted to Phys Rev D. The current version
corrects an error in our original paper and adds some clarifying language.
The error also required correction of the graphs now shown in Figures 3
through
Estimating the detectable rate of capture of stellar mass black holes by massive central black holes in normal galaxies
The capture and subsequent inspiral of stellar mass black holes on eccentric
orbits by central massive black holes, is one of the more interesting likely
sources of gravitational radiation detectable by LISA. We estimate the rate of
observable events and the associated uncertainties. A moderately favourable
mass function could provide many detectable bursts each year, and a detection
of at least one burst per year is very likely given our current understanding
of the populations in cores of normal spiral galaxies.Comment: 3 pages 2-column revtex Latex macro. No figures. Classical and
Quantum Gravity, accepte
Comparison of LISA and Atom Interferometry for Gravitational Wave Astronomy in Space
One of the atom interferometer gravitational wave missions proposed by
Dimopoulos et al.1 in 2008 was called AGIS-Sat. 2. It had a suggested
gravitational wave sensitivity set by the atom state detection shot noise level
that started at 1 mHz, was comparable to LISA sensitivity from 1 to about 20
mHz, and had better sensitivity from 20 to 500 mHz. The separation between the
spacecraft was 1,000 km, with atom interferometers 200 m long and shades from
sunlight used at each end. A careful analysis of many error sources was
included, but requirements on the time-stability of both the laser wavefront
aberrations and the atom temperatures in the atom clouds were not investigated.
After including these considerations, the laser wavefront aberration stability
requirement to meet the quoted sensitivity level is about 1\times10-8
wavelengths, and is far tighter than for LISA. Also, the temperature
fluctuations between atom clouds have to be less than 1 pK. An alternate atom
interferometer GW mission in Earth orbit called AGIS-LEO with 30 km satellite
separation has been suggested recently. The reduction of wavefront aberration
noise by sending the laser beam through a high-finesse mode-scrubbing optical
cavity is discussed briefly, but the requirements on such a cavity are not
given. Unfortunately, such an Earth-orbiting mission seems to be considerably
more difficult to design than a non-geocentric mission and does not appear to
have comparably attractive scientific goals.Comment: Submitted to Proc. 46th Rencontres de Moriond: Gravitational Waves
and Experimental Gravity, March 20 - 27, 2011, La Thuile, Ital
Using binary stars to bound the mass of the graviton
Interacting white dwarf binary star systems, including helium cataclysmic
variable (HeCV) systems, are expected to be strong sources of gravitational
radiation, and should be detectable by proposed space-based laser
interferometer gravitational wave observatories such as LISA. Several HeCV star
systems are presently known and can be studied optically, which will allow
electromagnetic and gravitational wave observations to be correlated.
Comparisons of the phases of a gravitational wave signal and the orbital light
curve from an interacting binary white dwarf star system can be used to bound
the mass of the graviton. Observations of typical HeCV systems by LISA could
potentially yield an upper bound on the inverse mass of the graviton as strong
as km (
eV), more than two orders of magnitude better than present solar system derived
bounds.Comment: 21 pages plus 4 figures; ReVTe
Annual modulation of the Galactic binary confusion noise bakground and LISA data analysis
We study the anisotropies of the Galactic confusion noise background and its
effects on LISA data analysis. LISA has two data streams of the gravitational
waves signals relevant for low frequency regime. Due to the anisotropies of the
background, the matrix for their confusion noises has off-diagonal components
and depends strongly on the orientation of the detector plane. We find that the
sky-averaged confusion noise level could change by a factor of 2
in three months, and would be minimum when the orbital position of LISA is
either around the spring or autumn equinox.Comment: 13 pages, 6 figure
Angular Resolution of the LISA Gravitational Wave Detector
We calculate the angular resolution of the planned LISA detector, a
space-based laser interferometer for measuring low-frequency gravitational
waves from galactic and extragalactic sources. LISA is not a pointed
instrument; it is an all-sky monitor with a quadrupolar beam pattern. LISA will
measure simultaneously both polarization components of incoming gravitational
waves, so the data will consist of two time series. All physical properties of
the source, including its position, must be extracted from these time series.
LISA's angular resolution is therefore not a fixed quantity, but rather depends
on the type of signal and on how much other information must be extracted.
Information about the source position will be encoded in the measured signal in
three ways: 1) through the relative amplitudes and phases of the two
polarization components, 2) through the periodic Doppler shift imposed on the
signal by the detector's motion around the Sun, and 3) through the further
modulation of the signal caused by the detector's time-varying orientation. We
derive the basic formulae required to calculate the LISA's angular resolution
for a given source. We then evaluate for
two sources of particular interest: monchromatic sources and mergers of
supermassive black holes. For these two types of sources, we calculate (in the
high signal-to-noise approximation) the full variance-covariance matrix, which
gives the accuracy to which all source parameters can be measured. Since our
results on LISA's angular resolution depend mainly on gross features of the
detector geometry, orbit, and noise curve, we expect these results to be fairly
insensitive to modest changes in detector design that may occur between now and
launch. We also expect that our calculations could be easily modified to apply
to a modified design.Comment: 15 pages, 5 figures, RevTex 3.0 fil
Detection of Vacuum Birefringence with Intense Laser Pulses
We propose a novel technique that promises hope of being the first to
directly detect a polarization in the quantum electrodynamic (QED) vacuum. The
technique is based upon the use of ultra-short pulses of light circulating in
low dispersion optical resonators. We show that the technique circumvents the
need for large scale liquid helium cooled magnets, and more importantly avoids
the experimental pitfalls that plague existing experiments that make use of
these magnets. Likely improvements in the performance of optics and lasers
would result in the ability to observe vacuum polarization in an experiment of
only a few hours duration.Comment: 4 pages, 1 figur
Stochastic background of gravitational waves
A continuous stochastic background of gravitational waves (GWs) for burst
sources is produced if the mean time interval between the occurrence of bursts
is smaller than the average time duration of a single burst at the emission,
i.e., the so called duty cycle must be greater than one. To evaluate the
background of GWs produced by an ensemble of sources, during their formation,
for example, one needs to know the average energy flux emitted during the
formation of a single object and the formation rate of such objects as well. In
many cases the energy flux emitted during an event of production of GWs is not
known in detail, only characteristic values for the dimensionless amplitude and
frequencies are known. Here we present a shortcut to calculate stochastic
backgrounds of GWs produced from cosmological sources. For this approach it is
not necessary to know in detail the energy flux emitted at each frequency.
Knowing the characteristic values for the ``lumped'' dimensionless amplitude
and frequency we show that it is possible to calculate the stochastic
background of GWs produced by an ensemble of sources.Comment: 6 pages, 4 eps figures, (Revtex) Latex. Physical Review D (in press
The Transition from Inspiral to Plunge for a Compact Body in a Circular Equatorial Orbit Around a Massive, Spinning Black Hole
There are three regimes of gravitational-radiation-reaction-induced inspiral
for a compact body with mass mu, in a circular, equatorial orbit around a Kerr
black hole with mass M>>mu: (i) The "adiabatic inspiral regime", in which the
body gradually descends through a sequence of circular, geodesic orbits. (ii) A
"transition regime", near the innermost stable circular orbit (isco). (iii) The
"plunge regime", in which the body travels on a geodesic from slightly below
the isco into the hole's horizon. This paper gives an analytic treatment of the
transition regime and shows that, with some luck, gravitational waves from the
transition might be measurable by the space-based LISA mission.Comment: 8 Pages and 3 Figures; RevTeX; submitted to Physical Review
A note on light velocity anisotropy
It is proved that in experiments on or near the Earth, no anisotropy in the
one-way velocity of light may be detected. The very accurate experiments which
have been performed to detect such an effect are to be considered significant
tests of both special relativity and the equivalence principleComment: 8 pages, LaTex, Gen. Relat. Grav. accepte
- …