10,057 research outputs found

    Research study of droplet sizing technology leading to the development of an advanced droplet sizing system

    Get PDF
    An instrument to measure the size and velocity of droplets was developed. The instrument uses one of two techniques, as appropriate. In the first technique two small laser beams of one color identify the center of a larger laser beam of a different color. This defines a region of almost uniform intensity where the light scattered by the individual droplets can be related to their size. The first technique uses the visibility of a Doppler burst and validates it against the peak intensity of the signal's pedestal. Results are presented for monodisperse, bimodal, trimodal, and polydisperse sprays produced by the Berglund-Liu droplet generator and a pressure nozzle. Size distributions of a given spray obtained using three different size ranges show excellent self-consistency in the overlapping region. Measurements of sprays of known characteristics exhibit errors in the order of 10%. The principles of operation and design criteria of the instrument are discussed in great detail

    DIAL with heterodyne detection including speckle noise: Aircraft/shuttle measurements of O3, H2O, and NH3 with pulsed tunable CO2lasers

    Get PDF
    A parametric analysis of DIAL sensitivity with heterodyne detection is presented and comparisons with direct detection are discussed. Examples are given for monitoring vertical distributions of O3, H2O, and NH3 using a ground-, aircraft-, or shuttle-based pulsed tunable CO2 laser DIAL system. Results indicate that maximum sensitivity at minimum laser energy per measurement requires multiple pulse operation with the energy per pulse selected so that the measured photon rate is approximately equal to the detector IF bandwidth. Measurement sensitivities can be maximized and interference effects minimized by fine adjustment of measurement frequencies using the tunability of high pressure lasers. The use of rare isotope lasers minimizes loss due to CO2 atmospheric absorption

    DIAL with heterodyne detection including speckle noise: Aircraft/shuttle measurements of O3, H2O, and NH3 with pulsed tunable CO2 lasers

    Get PDF
    Atmospheric trace constituent measurements with higher vertical resolution than attainable with passive radiometers are discussed. Infrared differential absorption lidar (DIAL), which depends on Mie scattering from aerosols, has special advantages for tropospheric and lower stratospheric applications and has great potential importance for measurements from shuttle and aircraft. Differential absorption lidar data reduction involves comparing large amplitude signals which have small differences. The accuracy of the trace constituent concentration inferred from DIAL measurements depends strongly on the errors in determining the amplitude of the signals. Thus, the commonly used SNR expression (signal divided by noise in the absence of signal) is not adequate to describe DIAL measurement accuracy and must be replaced by an expression which includes the random coherent (speckle) noise within the signal. A comprehensive DIAL computer algorithm is modified to include heterodyne detection and speckle noise. Examples for monitoring vertical distributions of O3, H2O, and NH3 using a ground-, aircraft-, or shuttle-based pulsed tunable CO2 laser DIAL system are given

    Photoemission induced gating of topological insulator

    Full text link
    The recently discovered topological insulators exhibit topologically protected metallic surface states which are interesting from the fundamental point of view and could be useful for various applications if an appropriate electronic gating can be realized. Our photoemission study of Cu intercalated Bi2Se3 shows that the surface states occupancy in this material can be tuned by changing the photon energy and understood as a photoemission induced gating effect. Our finding provides an effective tool to investigate the new physics coming from the topological surface states and suggests the intercalation as a recipe for synthesis of the material suitable for electronic applications.Comment: + resistivity data and some discussio

    Resistivity and Hall effect of LiFeAs: Evidence for electron-electron scattering

    Full text link
    LiFeAs is unique among the broad family of FeAs-based superconductors, because it is superconducting with a rather large Tc≃18T_c\simeq 18 K under ambient conditions although it is a stoichiometric compound. We studied the electrical transport on a high-quality single crystal. The resistivity shows quadratic temperature dependence at low temperature giving evidence for strong electron-electron scattering and a tendency towards saturation around room temperature. The Hall constant is negative and changes with temperature, what most probably arises from a van Hove singularity close to the Fermi energy in one of the hole-like bands. Using band structure calculations based on angular resolved photoemission spectra we are able to reproduce all the basic features of both the resistivity as well as the Hall effect data.Comment: 6 pages, 3 figures included; V2 has been considerably revised and contain a more detailed analysis of the Hall effect dat

    Simple self-calibrating polarimeter for measuring the Stokes parameters of light

    Get PDF
    A simple, self-calibrating, rotating-waveplate polarimeter is largely insensitive to light intensity fluctuations and is shown to be useful for determining the Stokes parameters of light. This study shows how to minimize the in situ self-calibration time, the measurement time and the measurement uncertainty. The suggested methods are applied to measurements of spatial variations in the linear and circular polarizations of laser light passing through glass plates with a laser intensity dependent birefringence. These are crucial measurements for the ACME electron electric dipole measurements, requiring accuracies in circular and linear polarization fraction of about 0.1% and 0.4%, with laser intensities up to 100 mW/mm2\text{mW/mm}^2 incident into the polarimeter
    • …
    corecore