13,517 research outputs found

    Plankton blooms in vortices: The role of biological and hydrodynamic time scales

    Get PDF
    We study the interplay of hydrodynamic mesoscale structures and the growth of plankton in the wake of an island, and its interaction with a coastal upwelling. Our focus is on a mechanism for the emergence of localized plankton blooms in vortices. Using a coupled system of a kinematic flow mimicking the mesoscale structures behind the island and a simple three component model for the marine ecosystem, we show that the long residence times of nutrients and plankton in the vicinity of the island and the confinement of plankton within vortices are key factors for the appearance of localized plankton bloomsComment: 29 pages, 9 figure

    Biological activity in the wake of an island close to a coastal upwelling

    Get PDF
    Hydrodynamic forcing plays an important role in shaping the dynamics of marine organisms, in particular of plankton. In this work we study the planktonic biological activity in the wake of an island which is close to an upwelling region. Our research is based on numerical analysis of a kinematic flow mimicking the hydrodynamics in the wake, coupled to a three-component plankton model. Depending on model parameters different phenomena are described: a) The lack of transport of nutrients and plankton across the wake, so that the influence of upwelling on primary production on the other side of the wake is blocked. b) For sufficiently high vorticity, the role of the wake in facilitating this transport and leading to an enhancement of primary production. Finally c) we show that under certain conditions the interplay between wake structures and biological growth leads to plankton blooms inside mesoscale hydrodynamic vortices that act as incubators of primary production.Comment: 42 pages, 9 figure

    Minimal mechanisms for vegetation patterns in semiarid regions

    Get PDF
    The minimal ecological requirements for formation of regular vegetation patterns in semiarid systems have been recently questioned. Against the general belief that a combination of facilitative and competitive interactions is necessary, recent theoretical studies suggest that, under broad conditions, nonlocal competition among plants alone may induce patterns. In this paper, we review results along this line, presenting a series of models that yield spatial patterns when finite-range competition is the only driving force. A preliminary derivation of this type of model from a more detailed one that considers water-biomass dynamics is also presented. Keywords: Vegetation patterns, nonlocal interactionsComment: 8 pages, 4 figure

    Fourier Mukai Transforms for Gorenstein Schemes

    Get PDF
    We extend to singular schemes with Gorenstein singularities or fibered in schemes of that kind Bondal and Orlov's criterion for an integral functor to be fully faithful. We also contemplate a criterion for equivalence. We offer a proof that is new even if we restrict to the smooth case. In addition, we prove that for locally projective Gorenstein morphisms, a relative integral functor is fully faithful if and only if its restriction to each fibre also is it. These results imply the invertibility of the usual relative Fourier-Mukai transform for an elliptic fibration as a direct corollary.Comment: Final version. To appear in Advances in Mathematic

    Surface mixing and biological activity in the four Eastern Boundary Upwelling Systems

    Get PDF
    Eastern Boundary Upwelling Systems (EBUS) are characterized by a high productivity of plankton associated with large commercial fisheries, thus playing key biological and socio-economical roles. The aim of this work is to make a comparative study of these four upwelling systems focussing on their surface stirring, using the Finite Size Lyapunov Exponents (FSLEs), and their biological activity, based on satellite data. First, the spatial distribution of horizontal mixing is analysed from time averages and from probability density functions of FSLEs. Then we studied the temporal variability of surface stirring focussing on the annual and seasonal cycle. There is a global negative correlation between surface horizontal mixing and chlorophyll standing stocks over the four areas. To try to better understand this inverse relationship, we consider the vertical dimension by looking at the Ekman-transport and vertical velocities. We suggest the possibility of a changing response of the phytoplankton to sub/mesoscale turbulence, from a negative effect in the very productive coastal areas to a positive one in the open ocean.Comment: 12 pages. NPG Special Issue on "Nonlinear processes in oceanic and atmospheric flows". Open Access paper, available also at the publisher site: http://www.nonlin-processes-geophys.net/16/557/2009
    • …
    corecore