561 research outputs found

    Modulation of prompt fast-ion loss by applied n=2 fields in the DIII-D tokamak

    Get PDF
    Energy and pitch angle resolved measurements of escaping neutral beam ions (E approximate to 80 keV) have been made during DIII-D L-mode discharges with applied, slowly rotating, n = 2 magnetic perturbations. Data from separate scintillator detectors (FILDs) near and well below the plasma midplane show fast-ion losses correlated with the internal coil (I-coil) fields. The dominant fast-ion loss signals are observed to decay within one poloidal transit time after beam turn-off indicating they are primarily prompt loss orbits. Also, during application of the rotating I-coil fields, outboard midplane edge density and bremsstrahlung emission profiles exhibit a radial displacement of up to delta R approximate to 1 cm. Beam deposition and full orbit modeling of these losses using M3D-C1 calculations of the perturbed kinetic profiles and fields reproduce many features of the measured losses. In particular, the predicted phase of the modulated loss signal with respect to the I-coil currents is in close agreement with FILD measurements as is the relative amplitudes of the modulated losses for the co and counter-current beam used in the experiment. These simulations show modifications to the beam ion birth profile and subsequent prompt loss due to changes in the edge density; however, the dominant factor causing modulation of the losses to the fast-ion loss detectors is the perturbed magnetic field (delta B/B approximate to 10(-3) in the plasma). Calculations indicate total prompt loss to the DIII-D wall can increase with application of the n = 2 perturbation by up to 7% for co-current injected beams and 3% for counter-current injected beams depending on phase of the perturbation relative to the injected beam.US Department of Energy DE-FC02-04ER54698, SC-G903402, DEAC02- 09CH11466, DE-FG02-04ER54761, DE-FG02- 05ER5480

    Landau's quasi-particle mapping: Fermi liquid approach and Luttinger liquid behavior

    Full text link
    A continuous unitary transformation is introduced which realizes Landau's mapping of the elementary excitations (quasi-particles) of an interacting Fermi liquid system to those of the system without interaction. The conservation of the number of quasi-particles is important. The transformation is performed numerically for a one-dimensional system, i.e. the worst case for a Fermi liquid approach. Yet evidence for Luttinger liquid behavior is found. Such an approach may open a route to a unified description of Fermi and Luttinger liquids on all energy scales.Comment: 4 pages, 3 figures included, final version to appear in Phys. Rev. Lett., references updated, slight re-focus on the treatment of all energy scale

    Modeling the response of a fast ion loss detector using orbit tracing techniques in a neutral beam prompt-loss study on the DIII-D tokamak

    Get PDF
    A numerical model describing the expected measurements of neutral beam prompt-losses by anewly commissioned fast ion loss detector FILD in DIII-D is presented. This model incorporatesthe well understood neutral beam deposition profiles from all eight DIII-D beamlines to construct aprompt-loss source distribution. The full range of detectable ion orbit phase space available to theFILD is used to calculate ion trajectories that overlap with neutral beam injection footprints. Weightfunctions are applied to account for the level of overlap between these detectable orbits and thespatial and velocity pitch properties of ionized beam neutrals. An experimental comparison isperformed by firing each neutral beam individually in the presence of a ramping plasma current.Fast ion losses determined from the model are in agreement with measured losses.© 2010American Institute of Physics.US Department of Energy SC-G903402, DE-AC02-09CH11466, DE-FC02-04ER5469

    Saturation of fishbone instability by self-generated zonal flows in tokamak plasmas

    Full text link
    Gyrokinetic simulations of the fishbone instability in DIII-D tokamak plasmas find that self-generated zonal flows can dominate the nonlinear saturation by preventing coherent structures from persisting or drifting in the energetic particle phase space with mode down-chirping. Results from the simulation with zonal flows agree quantitatively, for the first time, with experimental measurements of the fishbone saturation amplitude and energetic particle transport. Moreover, the suppression of the microturbulence by fishbone-induced zonal flows is likely responsible for the formation of an internal transport barrier that was observed after fishbone bursts in this DIII-D experiment. Finally, gyrokinetic simulations of a related ITER baseline scenario show that the fishbone induces insignificant energetic particle redistribution and may enable high performance scenarios in ITER burning plasma experiments

    Tomonaga-Luttinger model with an impurity for a weak two-body interaction

    Full text link
    The Tomonaga-Luttinger model with impurity is studied by means of flow equations for Hamiltonians. The system is formulated within collective density fluctuations but no use of the bosonization formula is made. The truncation scheme includes operators consisting of up to four fermion operators and is valid for small electron-electron interactions. In this regime, the exact expression for the anomalous dimension is recovered. Furthermore, we verify the phase diagram of Kane and Fisher also for intermediate impurity strength. The approach can be extended to more general one-body potentials.Comment: 10 pages, 1 figur

    Energetic ion transport by microturbulence is insignificant in tokamaks

    Get PDF
    Energetic ion transport due to microturbulence is investigated in magnetohydrodynamic-quiescent plasmas by way of neutral beam injection in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. A range of on-axis and off-axis beam injection scenarios are employed to vary relevant parameters such as the character of the background microturbulence and the value of Eb/Te , where Eb is the energetic ion energy and Te the electron temperature. In all cases, it is found that any transport enhancement due to microturbulence is too small to observe experimentally. These transport effects are modeled using numerical and analytic expectations that calculate the energetic ion diffusivity due to microturbulence. It is determined that energetic ion transport due to coherent fluctuations (e.g., Alfvén eigenmodes) is a considerably larger effect and should therefore be considered more important for ITER.United States. Dept. of Energy (DE-FC02-04ER54698)United States. Dept. of Energy (DE-FC02-99ER54512)United States. Dept. of Energy (DE-FG03-97ER54415)United States. Dept. of Energy (DE-FG02-07ER54917)United States. Dept. of Energy (DE-AC02-09CH11466)United States. Dept. of Energy (SC-G903402)United States. Dept. of Energy (DE-FG02-08ER54984)United States. Dept. of Energy ( DE-AC52-07NA27344)United States. Dept. of Energy ( DE-FG02-89ER53296)United States. Dept. of Energy (DE-FG02-08ER54999)United States. Dept. of Energy (DE-AC05-00OR22725

    Excitation Spectrum of One-dimensional Extended Ionic Hubbard Model

    Full text link
    We use Perturbative Continuous Unitary Transformations (PCUT) to study the one dimensional Extended Ionic Hubbard Model (EIHM) at half-filling in the band insulator region. The extended ionic Hubbard model, in addition to the usual ionic Hubbard model, includes an inter-site nearest-neighbor (n.n.) repulsion, VV. We consider the ionic potential as unperturbed part of the Hamiltonian, while the hopping and interaction (quartic) terms are treated as perturbation. We calculate total energy and ionicity in the ground state. Above the ground state, (i) we calculate the single particle excitation spectrum by adding an electron or a hole to the system. (ii) the coherence-length and spectrum of electron-hole excitation are obtained. Our calculations reveal that for V=0, there are two triplet bound state modes and three singlet modes, two anti-bound states and one bound state, while for finite values of VV there are four excitonic bound states corresponding to two singlet and two triplet modes. The major role of on-site Coulomb repulsion UU is to split singlet and triplet collective excitation branches, while VV tends to pull the singlet branches below the continuum to make them bound states.Comment: 10 eps figure

    Magnetic fusion with high energy self-colliding ion beams

    Full text link
    Self-consistent equilibria are obtained for high beta plasma where almost all of the ions are ene with a gyroradius of the order of the plasma scale length. Magnetohydrodynamics would not apply to such a plasma. Recent experiments with tokamaks suggest that it would be insensitive to microinstabilities. Several methods are described for creating the plasma with intense neutralized ion beams
    corecore