144 research outputs found

    Paraphrastic Reformulations in Spoken Corpora

    Get PDF
    International audienceOur work addresses the automatic detection of paraphrastic reformulation in French spoken corpora. The proposed approach is syn-tagmatic. It is based on specific markers and the specificities of the spoken language. Manual multi-dimensional annotation performed by two annotators provides fine-grained reference data. An automatic method is proposed in order to decide whether sentences contain or not paraphras-tic relations. The obtained results show up to 66.4% precision. Analysis of the manual annotations indicates that few paraphrastic segments show morphological modifications (inflection, derivation or compounding) and that the syntactic equivalence between the segments is seldom respected, as these usually belong to different syntactic categories

    Exercise Capacity in Patients With Obstructive Hypertrophic Cardiomyopathy:SEQUOIA-HCM Baseline Characteristics and Study Design

    Get PDF
    Patients with obstructive hypertrophic cardiomyopathy (oHCM) have increased risk of arrhythmia, stroke, heart failure, and sudden death. Contemporary management of oHCM has decreased annual hospitalization and mortality rates, yet patients have worsening health-related quality of life due to impaired exercise capacity and persistent residual symptoms. Here we consider the design of clinical trials evaluating potential oHCM therapies in the context of SEQUOIA-HCM (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM). This large, phase 3 trial is now fully enrolled (N = 282). Baseline characteristics reflect an ethnically diverse population with characteristics typical of patients encountered clinically with substantial functional and symptom burden. The study will assess the effect of aficamten vs placebo, in addition to standard-of-care medications, on functional capacity and symptoms over 24 weeks. Future clinical trials could model the approach in SEQUOIA-HCM to evaluate the effect of potential therapies on the burden of oHCM. (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM [SEQUOIA-HCM]; NCT05186818).</p

    Geographic variations in the PARADIGM-HF heart failure trial

    Get PDF
    Aims: The globalization of clinical trials has highlighted geographic variations in patient characteristics, event rates, and treatment effects. We investigated these further in PARADIGM-HF, the largest and most globally representative trial in heart failure (HF) to date. Methods and results: We looked at five regions: North America (NA) 622 (8%), Western Europe (WE) 1680 (20%), Central/Eastern Europe/Russia (CEER) 2762 (33%), Latin America (LA) 1413 (17%), and Asia-Pacific (AP) 1487 (18%). Notable differences included: WE patients (mean age 68 years) and NA (65 years) were older than AP (58 years) and LA (63 years) and had more coronary disease; NA and CEER patients had the worst signs, symptoms, and functional status. North American patients were the most likely to have a defibrillating-device (53 vs. 2% AP) and least likely prescribed a mineralocorticoid receptor antagonist (36 vs. 61% LA). Other evidence-based therapies were used most frequently in NA and WE. Rates of the primary composite outcome of cardiovascular (CV) death or HF hospitalization (per 100 patient-years) varied among regions: NA 13.5 (95% CI 11.7–15.6), WE 9.6 (8.6–10.6), CEER 12.3 (11.4–13.2), LA 11.2 (10.0–12.5), and AP 12.5 (11.3–13.8). After adjustment for prognostic variables, relative to NA, the risk of CV death was higher in LA and AP and the risk of HF hospitalization lower in WE. The benefit of sacubitril/valsartan was consistent across regions. Conclusion: There were many regional differences in PARADIGM-HF, including in age, symptoms, comorbidity, background therapy, and event-rates, although these did not modify the benefit of sacubitril/valsartan

    Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition.

    Get PDF
    Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.This work was supported by the Medical Research Council (UK). S.F. was supported by a Herchel Smith Research Studentship and K.F. by an MRC Career Development Award. E.R.M is supported by the ERC Advanced Researcher award 323004–ONCOTREAT. P.H.M. is supported by Senior Investigator Awards from the Wellcome Trust and NIHR. The Cambridge Human Research Tissue Bank and A.W. are supported by the NIHR Cambridge Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Nature Publishing at http://dx.doi.org/10.1038/nature19353

    Genome-wide association study reveals novel genetic loci:a new polygenic risk score for mitral valve prolapse

    Get PDF
    AIMS: Mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of >2% in the general adult population. Despite this high incidence, there is a limited understanding of the molecular mechanism of this disease, and no medical therapy is available for this disease. We aimed to elucidate the genetic basis of MVP in order to better understand this complex disorder. METHODS AND RESULTS: We performed a meta-analysis of six genome-wide association studies that included 4884 cases and 434 649 controls. We identified 14 loci associated with MVP in our primary analysis and 2 additional loci associated with a subset of the samples that additionally underwent mitral valve surgery. Integration of epigenetic, transcriptional, and proteomic data identified candidate MVP genes including LMCD1, SPTBN1, LTBP2, TGFB2, NMB, and ALPK3. We created a polygenic risk score (PRS) for MVP and showed an improved MVP risk prediction beyond age, sex, and clinical risk factors. CONCLUSION: We identified 14 genetic loci that are associated with MVP. Multiple analyses identified candidate genes including two transforming growth factor-beta signalling molecules and spectrin beta. We present the first PRS for MVP that could eventually aid risk stratification of patients for MVP screening in a clinical setting. These findings advance our understanding of this common valvular heart disease and may reveal novel therapeutic targets for intervention. KEY QUESTION: Expand our understanding of the genetic basis for mitral valve prolapse (MVP). Uncover relevant pathways and target genes for MVP pathophysiology. Leverage genetic data for MVP risk prediction. KEY FINDING: Sixteen genetic loci were significantly associated with MVP, including 13 novel loci. Interesting target genes at these loci included LTBP2, TGFB2, ALKP3, BAG3, RBM20, and SPTBN1. A risk score including clinical factors and a polygenic risk score, performed best at predicting MVP, with an area under the receiver operating characteristics curve of 0.677. TAKE-HOME MESSAGE: Mitral valve prolapse has a polygenic basis: many genetic variants cumulatively influence pre-disposition for disease. Disease risk may be modulated via changes to transforming growth factor-beta signalling, the cytoskeleton, as well as cardiomyopathy pathways. Polygenic risk scores could enhance the MVP risk prediction
    corecore